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Abstract

This thesis develops the theory of distributional reinforcement learning in the continuous-
time setting. Inspired by the literature on continuous-time reinforcement learning and
optimal control, we demonstrate that existing (discrete-time) distributional reinforcement
learning algorithms may fail to converge on the correct return distributions even in very
simple environments. To account for this, we characterize the return distributions in-
duced by a broad class of continuous-time stochastic Markov Reward Processes, and we
use this characterization to inform distributional reinforcement learning algorithms to
account for continuous-time evolution. The characterization takes the form of a family
of partial differential equations on the space of return distributions. Furthermore, we
address the issue of the representation of arbitrary probability measures with bounded
space, and in doing so we show how under a particular choice of representation, the re-
turn distributions are characterized by a set of Hamilton-Jacobi-Bellman equations, which
are ubiquitous in the optimal control literature. We then demonstrate a construction of
a continuous-time distributional algorithm and study its convergence properties in the
policy evaluation setting. Finally, we provide an implementation using deep neural net-
works and evaluate its performance empirically against various benchmarks.



Abrégé

Cette thèse développe la théorie de l’apprentissage par renforcement au niveau des dis-
tributions de probabilité des gains, dans le cas où le temps est continu. Inspirés par la
littérature du théorie de côntrole optimal et simplement l’apprentissage par renforce-
ment avec l’évolution de temps continu, nous démontrons que les algorithmes existants
ne peuvent pas toujours parvenir à converger sur les distributions de gains propres,
même lorsque l’environment est très simple. Pour rendre compte de ce résultat, nous
caractérisons les distributions des gains provoquées par une classe vaste de processus
Markoviens de récompenses stochastiques. Cette caractérisation, qui prend la forme
d’une famille d’équations differentielles aux dérivées partielles, est ensuite utilisée pour
informer la conception d’algorithmes d’apprentissage par renforcement qui modèlent
les distributions de gains qui évoluent continuellement. De plus, nous addressons le
problème de la representation des distributions probabilistes avec l’espace limité, et nous
montrons common choisir la representation pour transformer la caractérisation des dis-
tributions de gains à un ensemble d’équations Hamilton-Jacobi-Bellman, qui sont om-
niprésentes dans la littérature du contrôle optimal. Nous construisons une algorithme
pour apprendre ces representations en temps continu, et nous étudions ses propriétés
concernant la convergance vers des distributions de gains stationnaires en cas de l’évaluation
des stratégies. Finalement, nous fournissons une implémentation de cette algorithme
avec des résaux profonds, et nous validons ses performances empiriquement contre plusieurs
points de référence.



Acknowledgements

I am immensely thankful to my supervisors Dave Meger and Marc Bellemare for their
perpetual mentorship and guidance over the course of my Masters’. Over the past year
and a half of thesis work, I have repeatedly been impressed by the patience they had for
the many rabbit holes I got lost in, the lulls in progress, and the occasional technical issues
I’ve had due to my stubborn computer preferences. I truly commend them for not giving
up on me in the many moments where I felt like my efforts were futile.

Thanks as well to Dave Meger, Greg Dudek, and Hsiu-Chin Lin for making the Mobile
Robotics Lab at McGill such an amazing environment to be a part of, as well as the many
MRL students that have always made me feel welcome. Special thanks to Jean-François
Tremblay, Wesley Chung, Melissa Mozifian, Sahand Rezaei Shostari, Lucas Berry, Andrew
Holliday, and Abhisek Konar for the many sessions of discussion and guidance along the
way. I hope to see you all in person one day.

Marc Bellemare’s groups at Mila and Google have also been a great source of inspiration.
I am very thankful for the several discussions with Ross Goroshin about fancy techniques
in continuous-time optimal control, which have contributed a lot to my appreciation of
the field.

Additionally, I must thank Professors Prakash Panangaden, Luc Devroye and Siamak
Ravanbahksh for the invaluable challenges and assistance along the way, which sincerely
enriched my appreciation for mathematics. This thesis would look very different without
your influence.

I am extremely indebted to the wonderful community of free1 open source software devel-
opers that deserve tons of credit for the role they’ve played in improving my productivity.
In particular, I thank the Gentoo developers, especially those that have directly assisted
me numerous times on IRC, Matthew Johnson and all the other Jax developers for fixing
issues unbelievably quickly, and Linus for obvious reasons.

Lastly, I thank my family and friends for their encouragement over the years. In particu-
lar, I am very grateful to my parents, Casey, and my grandparents for their never-ending
support.

1As in freedom, of course, rather than beer

1



Contents

1 Introduction 5

2 Background 11
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Value-Based Reinforcement Learning . . . . . . . . . . . . . . . . . . 15
2.1.2 Methods for Estimating the Value Function . . . . . . . . . . . . . . . 18
2.1.3 Contraction Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Deep Q Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Stochastic Processes and Differential Equations . . . . . . . . . . . . . . . . . 26
2.2.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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“... on the planet Earth, man had always assumed that
he was more intelligent than dolphins because he had
achieved so much – the wheel, New York, wars and so on
– whilst all the dolphins had ever done was muck about
in the water having a good time. But conversely, the dol-
phins had always believed that they were far more intelli-
gent than man – for precisely the same reasons.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1
Introduction

Reinforcement learning (RL) is a form of artificial intelligence with the ambition of cre-
ating general purpose problem-solving algorithms that improve with experience. Unlike
other machine learning tasks, generally RL algorithms begin with no understanding of
the problem to be solved, and are not given any data to learn from. Consequently, aside
from learning how to solve a problem, an RL algorithm must also learn how to gather
data to improve itself by maximizing the long term returns accumulated by the agent due
to good behavior. A common paradigm in RL is based on estimating the expected value,
measured in cumulative future rewards, should the agent follow a given strategy. Due
to the uncertainty of how the agent’s actions affect the environment and the rewards,
estimating the expected value of a strategy can be quite difficult.

The expectation of the return, however, is not necessarily the best metric for evaluating
strategies. Expected values are most meaningful when the random variable can be sam-
pled arbitrarily many times, in which case the many samples “balance each other out” to
a net quantity that is approximated well by the expectation. However, this is not always
(and perhaps not even usually) the setting that RL algorithms find itself in. When fewer
samples can be drawn, individual samples have a much larger impact and may never be
“balanced out”.

5



More concretely, consider a scenario in which an agent is presented with a wager, and
the agent can decide whether to take the wager or not. Suppose the wager costs $1,000,
and by playing the wager the agent wins $100,000 with probability 1/10. The expected
value of this wager is simply calculated as (1/10) × $100000 − (9/10) × $1000 = $9, 100.
Using expected value as a means of decision making, we see that the agent should take
the wager, as it expects a profit of $9,100 each time the wager is played. However, often
this kind of reasoning can fail, especially when the agent has no knowledge of how the
rewards are generated. Reinforcement learning agents are generally not assumed to have
any such knowledge, so they have to estimate it by observing samples of state transitions
and rewards from the environment (or more commonly, a simulator of the environment).
Suppose the agent observes many samples and is very confident in its estimate of the
expected return for the wager, and is subsequently given only three more opportunities
to play. More likely than not, the agent will not win the wager within three attempts.
Should the agent still play the wager since its expected value is high, or should it simply
pass since most likely it’ll lose $3, 000? At the very least, one can make a reasonable
argument for each choice. In particular, if the agent would not have enough money to
feed its children if it were to lose $3, 000, it is likely that most people would agree that
playing the wager is irresponsible, and ultimately the “correct” decision depends on the
agent’s ethos.

Interestingly, there are relatively common scenarios where the more dangerous scenario
might be preferred by some people when an experiment cannot be run as many times
as desired. An amusing example of this is popular in online speed chess, where players
have very little time to spend pondering moves. The following is a demonstration of the
Lefong trap1 that is sometimes played in these games:

1 d4 g6 2 Bh6

1This trap was popularized by the Canadian FIDE Master Lefong Hua.



8rmblkans
7opopopZp
60Z0Z0ZpA
5Z0Z0Z0Z0
40Z0O0Z0Z
3Z0Z0Z0Z0
2POPZPOPO
1SNZQJBMR

a b c d e f g h

White’s second move, with regard to general chess strategy, is horrendous: the move
leaves the bishop undefended and in the line of attack of black’s bishop and knight. White
was likely hoping for the following continuation:

2. . . Bg7

8rmblkZns
7opopopap
60Z0Z0ZpA
5Z0Z0Z0Z0
40Z0O0Z0Z
3Z0Z0Z0Z0
2POPZPOPO
1SNZQJBMR

a b c d e f g h

3 BXg7

8rmblkZns
7opopopAp
60Z0Z0ZpZ
5Z0Z0Z0Z0
40Z0O0Z0Z
3Z0Z0Z0Z0
2POPZPOPO
1SNZQJBMR

a b c d e f g h

Black’s second move in this hypothesized continuation from white is even worse than
white’s second move! One may reasonably wonder then why the Lefong trap is ever
played, and the reason is simple: in such fast chess games, sites allow the players to
“pre-move” – that is, commit to a move during the opponent’s turn, to avoid spending
any time on their own turn. When black played the move g6, their intention was almost
surely to follow it with Bg7 (this is called the modern defense), making it a great candidate
for a pre-move. White exploits this by playing a horrible (but unaccounted for) move that
only works because black, hopefully, waives his ability to respond to Bh6. If black does not
pre-move Bg7, white’s Bh6 loses them the game. In 2018, teenaged grandmaster Andrew
Tang defeated Magnus Carlsen, the world champion and highest rated player of all time,
using the Lefong trap2.

2See https://www.youtube.com/watch?v=Kr5sxSja2D8.



The expected return of the Lefong move Bh6 is surely far from optimal. Should Andrew
Tang have attempted this move game after game, it would fail far more often than not,
so his strategy in this case could not have been based on the expected value of his move.
However, given that the move would not be played many times, and he may never have
the opportunity to beat a world champion with the Lefong again, Andrew Tang was able
to justify his move.

The theory of distributional RL can aid in addressing these types of conundrums by learn-
ing the entire probability distribution over the cumulative future returns due to a given
strategy, as opposed to just the expected value. Given an understanding of the distribu-
tion over returns, one has much more information at their disposal to aid in decision-
making, for example, by accouting for the variance of the return to make the risk-averse
decision of declining a wager, or by preferring decisions that lead potential to exception-
ally high rewards like defeating a world champion at their game.

Since its introduction in Bellemare et al. [2017a], distributional RL has gained lots of in-
terest within the reinforcement learning community, partly because of its impressive em-
pirical performance. Even when distributional RL is employed and decisions are made
just by comparing the means of return distributions, distributional RL still tends to out-
perform its expected value counterparts. Bellemare et al. [2017a] attributes this to the fact
that by modeling potential multimodalities in the return distributions, distributional al-
gorithms may be less sensitive to noise in stochastic training procedures. Additionally,
reinforcement learning algorithms tend to approximate returns under the assumption
that the policy is not changing over time, which generally is not the case – of course, in
order for an agent to improve at a task, it must change its policy. By modeling the full dis-
tribution over returns, this phenomenon can be manifested in the uncertainty associated
with return distributions, which is believed to help stabilize training.

Moreover, another interesting prospect for learning return distributions is that they can be
used to promote exploration in a principled manner. Since RL algorithms usually have to
collect their own data in order to learn, it is never really clear to them if their current idea
of an optimal strategy is in fact optimal, unless they are able to try every strategy in every
possible scenario. This is generally impossible. Despite being studied since the birth of
RL research, exploration still remains a major challenge, as well as a principle contributor
to the poor sample complexity often observed in reinforcement learning. Given estimates
of return distributions, however, it may be possible to use uncertainty in the return as a
proxy for determining which strategies to learn more about [Mavrin et al., 2019].



A long-standing issue in reinforcement learning research is that the literature usually
studies systems that evolve in discrete, fixed-duration timesteps. Of course, the real world
does not work this way, and even many of the synthetic benchmarks are actually mod-
eling processes that evolve continuously in time. Not accounting for continuous-time
processes in RL can lead to detriments in training time, their ability to correctly model
the value function, and performance [Doya, 2000, Munos, 2004, Tallec et al., 2019].

The analysis of continuous-time processes, however, incurs substantial mathematical chal-
lenges that are not present in discrete time. Even for fully deterministic processes with
very smooth dynamics and simple controls, in general the value function cannot be char-
acterized in a “classical”, intuitive sense. This is because in the continuous-time limit, the
value function does not preserve enough “smoothness”, so it must instead be interpreted
as a weakened notion of a solution to a PDE [Crandall and Lions, 1983]. Existing work in
continuous-time reinforcement learning and optimal control has addressed stochasticity
in the dynamics and the policy, but refrains from studying the distribution of the ran-
dom return by estimating only its mean. The principal goal of this thesis is to explore
the behavior of the return distribution function in the continuous time limit. Given the
undesirable non-smoothness of the value function in continuous time, it is only natural to
suspect that the return distribution function, being a function into an infinite-dimensional
space of probability measures, will have a non-trivial characterization (if it exists at all).
We will show that indeed the return distribution function does exist, and its uniqueness
can be established in a weak sense.

Beyond the analytical understanding, we must consider the computational challenges in-
volved in estimating the return distribution function, whose image is infinite-dimensional.
We will show that the manner in which probability measures are represented will be re-
flected in the PDE governing the evolution of the return distributions, which is a conse-
quence that has no equivalent manifestation in discrete time. We will also discuss a class
of representations of probability measures that induce a simple and familiar form of the
characterization, and use this knowledge to study computationally-tractable algorithms
for distributional policy evaluation that is convergent in the continuous time limit.

Aside from the concurrent work of Halperin [2021], to our knowledge, distributional
RL has not been studied in the continuous-time setting. This thesis will substantially
broaden the theory of continuous time distributional reinforcement learning by analyz-
ing the characteristics of the evolution of return distributions, providing tractable rein-
forcement learning algorithms that learn return distributions that are convergent in the
continuous-time limit, and by demonstrating that some of the problems with learning



value functions in continuous-time RL are exacerbated when estimating return distribu-
tions in continuous-time.

The thesis will be organized as follows. Chapter 2 provides an overview of the literature
of reinforcement learning and related fields, and discusses some important results that
will be useful in the development moving forward. Next, in Chapter 3, we study how re-
turn distributions evolve in time and ultimately derive a partial differential equation that
characterizes return distributions induced by a vast class of stochastic processes. Chapter
4 is concerned with framing continuous-time distributional RL as an optimization in the
space of probability measures, as well as methods of representing probability measures
and continuous-time evolutions in a tractable manner. In Chapter 5, we present the DE-
ICIDE framework for the construction of continuous-time distributional reinforcement
leanring algorithms, and we outline a selection of algorithm examples. Empirical results
of these algorithms are given in §5.2.



2
Background

This section will give a concise background of the mathematical concepts that will be
useful in the sequel, as well as a review of the literature that this work builds on. It is
assumed that the reader is familiar with multivariable calculus, linear algebra, and the
analysis of algorithms. Section §2 gives an overview of the notational conventions used
throughout the remainder of the thesis, and the remaining sections briefly cover the main
results leading up to my research.

Notation

Symbol Meaning
R The set of real numbers

R+ The set of nonnegative real numbers
N The set of natural numbers, {1, 2, . . . }
N0 The set of natural numbers including zero, N ∪ {0}
2X The powerset (set of all subsets) of a set X
Set The category with sets as objects and functions as morphisms
[N ] When N is an integer, [N ] , {1, . . . , N}.
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B(A) The Borel σ-algebra of the topological space A.
Ran(f) The range of a function f

E [f(X)] The expected value of f(X), where X is a random variable

E [f(X) | Y ] The conditional expectation of f(X) given the value of a random vari-
able Y

X
L
=Y Equality in law: the random variables X, Y are distributed identically
H(p) The (differential) entropy of a probability distribution p
H(p, q) The (differential) cross-entropy between probability distributions p and

q, defined asH(p, q) = −Ep[log q]

U (X) The uniform distribution over a bounded set X
C(A;B) The set of continuous functions f : A → B, endowed with the supre-

mum norm
C(A) Equivalent to C(A;B) when the output space B is unambiguous

Ck(A;B) The subset of C(A;B) with functions having continuous kth deriva-
tives, for k ∈ N

C∞(A;B) The subset of continuously differentiable functions in C(A;B)

Ck
c (A;B) The subset of Ck(A;B) containing functions that are supported on a

precompact set, k ∈ N ∪ {∞}
Ck

0 (A;B) The set of functions f in Cc(A;B) that are 0 on the boundary of the
support of f (Dirichlet boundary conditions)

AC(A) The set of absolutely continuous functions over a set A
Pp (X ) The set of probability measures over a measurable space X
Wp (X ) The set of probability measures over a set X endowed with the p-

Wasserstein metric
a ∧ b The minimum of a and b

a ∨ b The maximum of a and b

〈f, g〉 The inner product between elements f, g of an arbitrary inner product
space

〈f, g〉S The inner product between vectors f, g in an inner product space S
⊗ Pointwise (tensor) product: f ⊗ g = x 7→ f(x)g(x)

1[predicate] The function that takes the value 1 when predicate is true, and 0 other-
wise

χA The characteristic function of a measurable set A: χA(x) = 1[x∈A]



2.1. REINFORCEMENT LEARNING

δz The Dirac delta distribution1. This is defined such that for any function
f ,
∫
δz(x)f(x)dx = f(z).

id The identity function, id(x) = x

Tr The trace operator
Jx The Jacobian operator for vector-valued functions with respect to vari-

able(s) x
Hx The Hessian operator with respect to variable(s) x
δF
δu

The first variation of a functional F with respect to its parameter u
D(L ) The domain of an operator L

⊥(·) The “stop gradient operator”. It satisfies ⊥(f)(x) = f(x), but
∇⊥(f)(x) ≡ 0

ιk The projection map to dimension k; If x = (x1, . . . , xk, . . . xn), then ιkx =

xk.

2.1 Reinforcement Learning

The goal of Reinforcement Learning (RL) is to study how an agent can develop a behav-
ioral policy that is expected to successfully perform an abstract task, where success is
measured by the reward it receives by interacting with the environment. As an example,
we can think of the agent as a humanoid robot that is rewarded for each second it is bal-
ancing on one leg, and penalized (say, by receiving a negative reward) for falling down.
A robot that receives a high reward in this example will have demonstrated an ability to
balance itself on one foot.

Abstractly, in RL, an agent repeatedly undergoes the following cycle,

1. The agent observes the present state from the environment;

2. Based on the present state, the agent performs an action of its choice;

3. The agent subsequently transitions to a new state and receives a reward.

The goal of the agent is to maximize the total reward that it accumulates. Such a setting
is formally described by a Markov Decision Process.

Definition 1 (Markov Decision Process, [Puterman, 2014]). A Markov Decision Process
(MDP) is a 5-tuple (X ,A,R, P, γ), where

1Note that “distribution” in this context refers to a generalized function, and not a probability distribu-
tion.



2.1. REINFORCEMENT LEARNING

1. X is a set, called the state space, whose elements are referred to as states;

2. A is a set, called the action space, whose elements are referred to as actions;

3. r : X → R is the reward function;

4. P : X ×A →P(X ) is called the Markov kernel, where P (x′ | x, a) denotes the prob-
ability of the agent transitioning from state x ∈ X to state x′ ∈ X upon performing
action a ∈ X ;

5. γ ∈ (0, 1) is the discount factor, which serves the purpose of discounting the value of
future rewards.

5

We note that it is common in discrete-time RL to model “stochastic reward functions”,
in which case the reward function r is replaced with an “augmented” Markov kernel
P †(x′, r | x, a), which models the probability density of the next state and reward given
the current state and action. Furthermore, occasionally the return is modeled as a function
of both the current state and action – note however that the same effect can be simulated
roughly by augmenting each state with the last executed action. In this thesis, we will
only consider deterministic reward functions over the state space.

It will often be convenient to refer to the probability measure P π ∈ Pp (X ×X), given by

P π(x′ | x) =

∫
A
P (x′ | x, a)π(da | x) (2.1)

where π : X → Pp (A) is a policy that samples actions from a state-conditioned distribu-
tion.

An important remark about MDPs is that they satisfy the Markov property, that is, rewards
and state transitions are statistically independent from all states and actions from the past,
and depend only on the present state and action.

Despite the simplicity of the MDP model, the space of problems that can be formulated
as MDPs is enormous [Barto et al., 1981]. In fact, it has been hypothesized by leading
researchers that RL agents can achieve artificial general intelligence [Silver et al., 2021], im-
plying that they can learn anything that a human can. While RL cannot (yet) achieve
human-level intelligence, RL has successfully achieved superhuman performance in com-
plex board games like backgammon [Tesauro, 1994], chess, Shogi and Go [Silver et al.,
2018], superhuman performance in an entire suite of Atari video games [Mnih et al., 2015,
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Hessel et al., 2018, Badia et al., 2020], and impressive robot control [Lin, 1993, Smart and
Kaelbling, 2002, Peters et al., 2003, Lillicrap et al., 2015, Higuera et al., 2018, Bellemare
et al., 2020], among many other accomplishments.

2.1.1 Value-Based Reinforcement Learning

A common paradigm in RL, known as value-based RL, is based on the concept of learn-
ing to associate a notion of “value” to each state, and extracting a behavioral policy that
should be likely to bring the agent to states with high value. The notion of value in
RL is the expected value of the discounted return earned by the agent when following
a given policy. Let (Xi)

∞
i=0 denote the sequence of states visited by an agent in an MDP

(X ,A, r, P, γ) starting at state X0 = x – that is, Xk+1 ∼ P π(· | x). Given a measure space
(R+,Σ, µ), the discounted return from state x observed by this trajectory, Gπ

µ(x), is given
by

Gπ
µ(x) =

∫ ∞
0

γtr(Xt)dµ(t)

∣∣∣∣ X0 = x (2.2)

In discrete time, µ is generally chosen to be the counting measure #(A) = |A|, A ∈ Σ, in
which case we have

Gπ
#(x) =

∞∑
i=0

γir(Xi)

∣∣∣∣∣ X0 = x (2.3)

When µ is the counting measure or the Lebesgue measure, we write Gπ
µ , Gπ, and the

context of the problem should immediately resolve the ambiguity. For the remainder of
this chapter, we’ll consider only the discrete-time setting (µ = #) for a simpler illustration
of the core concepts of RL.

The value function V π : X → R for an agent following policy π : X →P(A)2 is defined as
the mapping from states to the expected discounted return:

V π(x) = E
Xi∼P,π

[∫ ∞
0

γtr(Xt)dµ(t)

∣∣∣∣ X0 = x

]
= E

Xi+1∼Pπ(·|Xi)
[Gπ(X0) | X0 = x] (2.4)

2The policy should be interpreted as a conditional probability over actions, e.g. π(a | x) = Pr(Ai = a |
Xi = x) for finite state and action spaces.
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An observation to note is that (2.4) can be written recursively, like so:

V π(x) = E
Xi∼Pπ

[∫ t

0

γsr(Xs) + γt
∫ ∞

0

γsr(Xs+t)dµ(s)

∣∣∣∣ X0 = x

]
= E

Xs∼Pπ

[∫
γsr(Xs)dµ(s) + γtV π(Xt)

∣∣∣∣ X0 = x

] (2.5)

In the discrete-time setting we have µ = # as discussed above, so we can equivalently
write

V π(x) = r(x) + γ E
X′∼Pπ

[V π(X ′) | X0 = x]

The recursive formulation (2.5) is referred to as the Bellman equation [Bellman, 1954]. When
the state space is finite, in discrete time this can simply be expressed as

VVV π =RRR+ γPPP πVVV π (2.6)

where X = {xi : i = 1, . . . , |X |}, VVV π ∈ R|X | given by VVV π
i = V π(xi), RRR ∈ R|X | satisfies

RRRi = r(xi), and PPP π ∈ R|X |×|X | satisfies PPP π
ij = P π(xj | xi). It is clear that (2.6) is linear in

the value function, and given thatPPP π is a stochastic matrix by construction and |γ| < 1 by
definition, we can compute the value function in closed form:

VVV π = (I − γPPP π)−1RRR (2.7)

Note that the inverse (I − γPPP π) exists since PPP π is a stochastic matrix and γ ∈ (0, 1) [Puter-
man, 2014]. Of course, it should be noted that matrix inversion is an expensive operation,
rendering the computation of (2.7) intractable when the state space is large.3 The process
of simply determining the value function corresponding to a fixed policy is a computa-
tional challenge at the core of value-based RL.

Even if we could compute the value function for a fixed policy, in RL the goal is to find an
optimal policy. In value-based RL, policies are compared according to their corresponding
value functions at each state. It is well-known that the existence of an optimal policy ac-
cording to this criterion is guaranteed [Puterman, 2014] in the discounted infinite horizon

3Note that we’re often interested in continuous state spaces, which have uncountable cardinality!
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setting4 and a policy π? is optimal if

∀π∀x ∈ X : V π?(x) ≥ V π(x)

Armed with just the knowledge of the value function, determining a good policy is non-
trivial (especially if the reward function and the transition probabilities are not given). It is
convenient to consider a slightly different mechanism for computing the value function,
which makes use of another mapping known as the action-value function. For a given
policy π, the action-value function (referred to as the Q-function) Qπ : X × A → R is
defined as

Qπ(x, a) = E
Xi,Ai∼P,π

[
∞∑
i=0

γir(Xi)

∣∣∣∣∣ X0 = x,A0 = a

]
= r(x) + E

X′∼P (·|x,a)
[V π(X ′)] (2.8)

Naturally, one can construct the value function from the action-value function,

V π(x) =

∫
A
Qπ(x, a)π(da | x) (2.9)

Bellman’s principle of optimality, which states that optimal policies are Markovian [Bell-
man, 1957], allows us to characterize the optimal Q-function Q? via the recurrence

Q?(x, a) = r(x) + E
X′∼P (·|x,a)

[
max
a′∈A

Q?(X ′, a′)

]
(2.10)

Given the optimal action-value function and a measure space (A,ΣA, ν), it is easy to ex-
tract an optimal policy:

π?(a | x) =
d

dν
χarg maxa′∈AQ

?(x,a′) (2.11)

where χM is the characteristic function of a measurable set M , d
dν

denotes the Radon-
Nikodym derivative operator with respect to the reference measure ν. In this thesis, we
will mainly be considering MDPs with finite action spaces, so we’ll have ν = # and an
optimal policy is then given by

4This refers to the model where agent interacts with the environment indefinitely.
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π?(a | x) =
1

|Q?(x)|1[a∈arg maxa′∈AQ
?(x,a′)]

|Q?(x)| ,
∣∣∣∣arg max

a′∈A
Q?(x, a′)

∣∣∣∣
2.1.2 Methods for Estimating the Value Function

By our discussion in the previous section, we see that the optimal control problem is easily
solved given the knowledge of the optimal (action-) value function. Unfortunately, usu-
ally the optimal value function is unknown, and determining the optimal value function
can be very challenging. As previously discussed, this can be accomplished by comput-
ing a matrix inversion (2.7), however there are several reasons why this is usually not
acceptable:

1. Matrix inversion has cubic time complexity, which is too expensive for large or con-
tinuous state spaces;

2. This method assumes the agent has knowledge of the precise state transition model
and the reward function, which is usually not assumed to be the case.

Next we will look at some alternative methods for estimating the value function, each of
which circumvent the expensive matrix inversion.

Policy and Value Iteration

When the state and action spaces are finite and the transition probabilities and reward
function are known, the optimal value function and an optimal policy can be approxi-
mated efficiently. The value iteration algorithm proposed by Bellman [1954] uses dynamic
programming [Bellman, 1954] to estimate the optimal value function, and extracts an op-
timal policy from the estimated optimal value function. More explicitly, if VVV k ∈ R|X |

represents the estimate of the optimal value function after k iterations, we compute VVV k+1

by an application of the Bellman optimality operator,

VVV k+1
x ← RRRx + γmax

a∈A
〈PPP x,a,VVV

k
x〉 ∀x ∈ X

where RRR ∈ R|X | is the vector of rewards at each state and PPP ∈ R|X |×|X |×|A| is the matrix
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of transition probabilities, where (PPP x,a)x′ = P (x′ | x, a). Upon convergence of the value
function, the optimal policy is simply computed by deterministically mapping each state
to the action yielding the greatest value according to the value function estimate. It can
be shown by a method similar to that shown in §2.1.3 that VVV k does indeed converge in
`∞(R) to the optimal value as k →∞, and for any given error tolerance the number of it-
erates required grows logarithmically. Each iteration can be computed inO(|X |2|A|) time,
making value iteration a substantially more efficient alternative to the matrix inversion
method as the state and action spaces grow.

Another simple method to learn the action-value function in the discrete state and action
space setting is by policy iteration [Howard, 1960]. Unlike value iteration, this method iter-
atively optimizes the estimate of the optimal policy until convergence while maintaining
an estimate of the optimal value function. It begins with a random guess of both the pol-
icy and the value function and oscillates between update stages known as policy evaluation
and policy improvement. In the policy evaluation stage, the value function is updated while
fixing the current estimate of the optimal policy, and in the policy improvement stage the
estimate of the optimal policy is updated while fixing the estimate of the optimal value
function. This scheme is conveyed by

VVV k+1
x ← RRRx + 〈PPP x,πππkx

,VVV k
x〉 ∀x ∈ X (Policy Evaluation) (2.12)

πππk+1
x ← arg max

a∈A

(
RRRx + γ〈PPP x,a,VVV

k+1
x 〉

)
∀x ∈ X (Policy Improvement) (2.13)

At each iteration, for each state, we compute a value function update requiring O(|X |2)

(assuming the mapping x : 7→ πππkx is a constant-time operation), plus a policy update re-
quiring O(|X |2|A|) time, for a total cost of O(|X |2(1 + |A|)) per iteration. It is known that
the policy iterates of this scheme will converge [Puterman and Brumelle, 1979]. Usually,
the state space is much larger than the action space, so iterations of the algorithm are
considerably less costly than matrix inversion.

Monte Carlo

When the transition probabilities and the reward function are not known, not all hope is
lost. Given a generative model of the environment, we can perform policy evaluation by
sampling returns from the generative model and estimating the expected discounted re-
turn using an unbiased statistical estimator, such as the sample mean. Suppose the agent



2.1. REINFORCEMENT LEARNING

starts at a random state X0 sampled from a distribution P0. We sample N trajectories,

A
(k)
i ∼ π(· | X(k)

i )

R
(k)
i = R(X

(k)
i )

S
(k)
i+1 ∼ P (· | X(k)

i , A
(k)
i )

G
(k)
i =

∞∑
j=i

γj−iR
(k)
i

for k ∈ {1, . . . , N}. We then estimate

V π(X0) =
1

N

N∑
k=1

G
(k)
0

This technique is an example of Monte Carlo sampling. While each value estimate is not
particularly expensive, Monte Carlo methods are known to exhibit high variance [Sut-
ton and Barto, 2018]. Consequently, many samples from the environment are generally
required to attain high-fidelity value estimates. In particular, in order to estimate the
action-value function to within an pointwise error of at most ε > 0 with probability 1− δ
for δ ∈ (0, 1), we must have

N ≥ c

(1− γ)3

|X ||A| log(c|X ||A|/δ)
ε2

where c is a universal constant and N is the required number of samples starting from
each state [Agarwal et al., 2019].

Temporal Difference Learning

In order to circumvent the high variance of Monte Carlo methods, when the transition
probabilities are not known an alternative method for estimating the value function is
temporal difference learning [Sutton, 1988]. In this setting, we begin with an arbitrary ini-
tialization of the value function V and perform updates after every state transition. That
is, at state x we sample
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a ∼ π(· | x)

x′ ∼ P (· | x, a)

r = R(x)

and then we update V according to

V (x) = α(r + γV (x′)) + (1− α)V (x)

for some learning rate α ∈ (0, 1). The trick here is that we use our current “guess” of
the value function as our estimate of the tail of the expected return (we are correcting our
guess against a target generated by our guess). This is called bootstrapping, and estimating
the expected return with bootstrapping incurs a bias. Consequently, in accordance with
the bias-variance tradeoff, the variance of temporal difference learning algorithms tends
to be far lower than in Monte Carlo algorithms, which theoretically suggests that less
samples are needed for an accurate (biased) estimate of the value function. Moreover, it is
known that this bias diminishes and ultimately vanishes as the agent observes more and
more data from the environment [Sutton and Barto, 2018], which further demonstrates
that temporal difference learning is a viable technique.

2.1.3 Contraction Arguments

A recurring motif in the reinforcement learning literature is the use of contraction argu-
ments to prove that a sequence of value function iterates converges to a fixed point. Gen-
erally, this involves defining an operator that is contractive on the space of value functions
for instance, and ultimately invoking the Banach fixed point theorem. A brief example will
be given. First, we define what it means for an operator to be contractive. Refer to Ap-
pendix A, particularly §A.1, for a primer on the topological concepts used in this section.

Definition 2 (Contraction mapping). Let T : X → X be an operator on a metric space
(X, d). We say that T is a contraction mapping (T is contractive) if for any pair of points
(x, y) ∈ X ×X we have

d(T x, T y) ≤ γd(x, y)
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where γ ∈ [0, 1). 5

Now we’re ready to state the celebrated fixed point theorem of Banach.

Theorem 2.1 (Banach’s fixed point theorem). Let (X, d) be a complete metric space, and let
T : X × X be contractive. Then the sequence {xk}∞k=1 where xk = T k(x1) converges to a fixed
point x ∈ X , in the sense that T x = x. Moreover, this fixed point is unique.

Proof. For any x ∈ X , we have

d(xn, xm) ≤ d(xn, T nx) + d(xm, T nx)

≤ γnd(x1, x) + γnd(xm−n, x)

→ 0

Therefore {xk}∞k=1 is a Cauchy sequence. Since (X, d) is complete, it follows that {xk}∞k=1

converges to some x? ∈ X . Since [0,∞) is known to be complete [Kreyszig, 1978], the
sequence {dk}∞k=1 where dk = d(xk, x

?) converges to 0, so we see that d(T x?, x?) = 0. By
the separation of points property (definition 23), we must have T x? = x?. The uniqueness
of the fixed point follows from Lemma A.1.

We conclude the section by demonstrating a method for learning the value function using
applications of the Bellman equation.

Theorem 2.2 (Sutton and Barto [2018]). Consider an MDP (X ,A, r, P, γ) and a policy π :

X → Pp (A), where γ < 1 and r is bounded. Denote by V the set of all value functions V : X → R
whereR = [minx r(x)

1−γ , maxx r(x)
1−γ ]. We define the Bellman operator T π : V → V according to

(T πV )(x) =

∫
X×A

(r(x) + γV (x′)) dP (x′ | x, a)dπ(a)

There exists a fixed point V π for T π, and the sequence {Vk}∞k=1 converges to V π uniformly.

Proof. Endow V with the metric d given by d(V1, V2) = supx∈X |V1(x) − V2(x)|. We will
begin by showing that T π is contractive. We have
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d(T πV1, T πV2) = sup
x∈X

∫
X×A
|r + γV1(x′)− (r(x) + γV2(x′))|dP (x′ | x, a)dπ(a)

= sup
x∈X

∫
X×A

γ|V1(x′)− V2(x′)|dP (x′ | x, a)dπ(a)

≤ γ sup
x∈X
|V1(x)− V2(x)|

∫
X×A

dP (x′ | x, a)dπ(a)

= γ sup
x∈X
|V1(x)− V2(x)|

= γd(V1, V2)

Since γ ∈ [0, 1), T π is indeed a contraction map. Moreover, it is known that the metric
space (V , d) presented here is complete when the image of V is complete, which is the
case since R is compact [Kreyszig, 1978]. Therefore, by the Banach fixed-point theorem,
the sequence {Vk}∞k=1 where Vk = (T π)kV1 converges to a value function V π which satisfies
T πV π = V π, and V π is the unique solution to the fixed point equation for T π. Moreover,
the convergence is uniform since we have |Vn(x) − V π(x)| ≤ γnd(V1, V

π) independently
of the state x.

2.1.4 Deep Q Networks

To conclude this brief overview of reinforcement learning, we’ll discuss a particularly
successful algorithm that makes the basis of many state of the art value-based learning
algorithms that are around today. This algorithm, known as Deep Q-learning, was fa-
mously employed by the DQN architecture to train an RL agent to outperform humans
in Atari video games [Mnih et al., 2015].

The idea is founded on the concept of Q-learning, which is an RL algorithm that was clas-
sically studied with MDPs having finite state and action spaces [Watkins, 1989]. Rather
than learning the value function, in Q-learning we learn a related concept called the action-
value function Q : X ×A → R for an MDP (X ,A, r, P, γ) with Ran(r) ⊂ R. This function is
defined as

Q(x, a) = E

[
∞∑
k=0

γkr(xk)

∣∣∣∣∣ x0 = x, a0 = a

]
= r(x) + γ E

x′∼P (·|x,a)
[V (x′)] (2.14)

The Q-learning algorithm learns the action-value function (also known as theQ-function)
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by approximate dynamic programming by iteratively applying the Bellman optimality op-
erator T ?,

T ?Q(x, a) = r(x) + γ E
x′∼P (·|x,a)

[
max
a′∈A

Q(x′, a′)

]
(2.15)

Denardo [1967] shows that T ? is contractive, and so it has a unique fixed point often
called Q?. However, in many applications of interest, the transition matrix P is unknown,
so (2.15) cannot be computed. Fortunately, iterates of (2.15) estimated by data sampled
from the environment are also shown to converge, resulting in Algorithm 1.

Algorithm 1 Q-Learning

Require: Qi, the Q-function estimated after the ith iteration
Require: αi ∈ R+, the “learning rate” or exponential smoothing parameter
Require: (s, a), a state-action pair.
Qi+1(x, a)← Qi(x, a) ∀(x, a)
x′, r ∼ P (·, · | x, a) . Sample next state from the environment
a′ ∼ U (arg maxa′∈AQ(x′, a′)) . Pick next best action
Qi+1(x, a)← αi(r + γQi(x′, a′)−Qi(x, a))
return Qi+1

Under certain conditions on the sequence {αi}∞i=1, it is known that {Qi}∞i=1 → Q? [Bert-
sekas and Tsitsiklis, 1996] when {Qi}∞i=1 is constructed by applications of Algorithm 1.

An important observation is that the updates in Algorithm 1 are independent of the policy
that governs the behavior of the agent in the environment. Consequently, we can perform
the Q-Learning update with any transition (x, a, x′) sampled from P . Such algorithms
are said to be off-policy, and are beneficial in the sense that we may collect a dataset of
transitions and perform updates using this dataset as many times as we’d like, which
makes better use of the data than simply applying an update using an observed transition
and then forgetting about that transition.

DeepQ-learning is a framework for performingQ-learning updates in environments with
large (even infinite) state spaces, by means of approximating Q functions by deep neu-
ral networks. The DQN implementation takes advantage of the off-policy nature of Q-
learning, and incorporates some additional techniques to stabilize the learning process.

Firstly, DQN makes use of experience replay [Lin, 1992], which consists of storing observed
state transitions in a buffer and performing Q-learning updates on minibatches sampled
from the buffer. As well as improving data efficiency as discussed above, experience re-
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play is also particularly helpful when training neural networks with stochastic samples.
In order to learn an expected value from samples (such as the Q-function), convergence
guarantees can only be made when the samples used for training are independent and
identically-distributed (i.i.d.) [Friedman, 2017]. This is generally not the case in RL, be-
cause consecutive trajectory samples are highly dependent on each other. By accruing
a buffer of transitions and sampling from the buffer uniformly when performing neural
network updates, transitions are far less dependent on each other. If we keep the policy
fixed, then in the limit as the buffer contains ininitely-many transitions, all samples from
the buffer are distributed according to the stationary distribution of the Markov chain
induced by the policy. Therefore, experience replay helps by providing the deep neural
networks with approximately i.i.d. data.

Another improvement included in DQN is the use of a target network. Since theQ-function
estimate is constantly evolving over the course of training, the supervised learning prob-
lem of mappingQ 7→ r+γQ is non-stationary. This severely hinders our ability to perform
policy evaluation. Another tactic to minimize the non-stationarity involves additionally
maintaining a “target Q-network” that is updated at a much slower rate. The target net-
work is used to compute the regression targets, so it is approximately fixed from the
perspective of the predictive Q-network used for inducing a policy. A sketch of DQN is
given in Algorithm 2.

Algorithm 2 DQN, Mnih et al. [2015]

Require: Q1
θ, Q

1
φ, neural nets parameterized by θ1, φ1

Require: {αi}∞i=1, sequence of learning rates
Require: τ ∈ (0, 1), exponential smoothing parameter
Require: π, a policy mapping Q-values to a probability distribution over actions
B ← ∅ . Initialize replay buffer
x1 ∼ ρ . Sample start state from environment
for k ∈ N do

ak ∼ π(Qk
θ(x, ·))

(xk+1, rk) ∼ P (·, · | xk, ak)
B ← B ∪ {(xk, ak, rk, xk+1)} . Add transition sample to replay buffer
θk+1 ← θk − αk∇θ

(
rk + γ arg maxa∈AQ

k
φ(x′, a)−Qk

θ(xk, ak)
)2

φk+1 ← τφk + (1− τ)θk+1

if episode is over then
xk+1 ∼ ρ . Reset the environment

end if
end for
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2.2 Stochastic Processes and Differential Equations

The material in this section makes extensive use of terminology and results from measure
theory and stochastic process theory. An overview of these concepts is given in Appen-
dices B and C.

Stochastic processes are simply trajectories of random variables through time. They will
be essential in several developments later in the thesis, and will form the basis for the
analysis of the return distributions.

In order to formalize this concept, we have to introduce the notion of a filtration. A filtra-
tion provides us with a mechanism of “evolving a probability space over time”, so that
the event space can in some sense reflect the history of the data previously observed.

Definition 3 (Filtration, Le Gall [2016]). Let (Ω,F ,Pr) be a probability space. A filtration
of F is a collection (Ft)t≥0 of σ-algebras where Ft ⊂ F for each t, and Fs ⊂ Ft whenever
s < t. A probability space associated with a filtration is called a filtered probability space,
and is written as the 4-tuple (Ω,F , (Ft)t≥0,Pr). 5

A Stochastic Differential Equation (SDE) is similar in principle to a differential equation
seen in a standard calculus course, however an SDE involves stochastic processes. Con-
sider a random process (Xt)t≥0 on a filtered probability space (Ω,F , (Ft)t≥0 , µ), where
Xt : Ft → X is a random variable (it is Ft-measurable) and X is an arbitrary space that Xt

takes values in. For a function f : X → X , we can study the following SDE,

Yt =

∫ t

0

f(Ys)dXs, (2.16)

where the integral is taken with respect to the stochastic process (Xt)t≥0, and for this thesis
it is understood as the Itô stochastic integral.

Definition 4 (Itô Integral, Le Gall [2016]). Consider a filtered probability space (Ω,F , (Ft)t≥0 ,Pr).
Let (Xt)t≥0 ⊂ Ω be a continuous semimartingale (Definition 40), and let f : Ω→ Ω be de-
fined such that the mappings t 7→ f(Xt(ω)) are continuous for each ω ∈ Ft. The Itô integral∫ t

0
f(Xs)dXs is given by

∫ t

0

f(Xs)dXs = lim
n→∞

pn−1∑
i=1

f(Xtni
)(Xtni+1

−Xtni
)
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where {tni }pn−1
i=1 is a partition of [0, t], and the sequence of partitions indexed by n have

mesh tending to 0 as n→∞. 5

Note that (Yt)t≥0 defined in (2.16) is itself a stochastic process. It is common to express
SDEs in a “differential form”; for instance (2.16) may be written as

dYt = f(Yt)dXt

although such expressions are merely symbolic.

The remainder of this section will give a general overview of the concepts from the theory
of stochastic processes and differential equations that are helpful for understanding the
remainder of the thesis. Note that the concepts in this section will not be presented with
full mathematical rigor, as that would likely require a book on its own [Le Gall, 2016].

2.2.1 Brownian Motion

Brownian motion is ubiquitous in the study of stochastic processes. The idea can be mo-
tivated as follows.

Let X0 , 0 ∈ R. Suppose we are modeling the trajectory of the random process (Xt)t≥0,
where X is “continuously perturbed” by Gaussian noise with mean 0. What does it mean
for something to be continuously perturbed by noise? A natural way to reason about this
is to discretize time, and suppose that the variable at consecutive timesteps differs by a
random quantity sampled independently from a Gaussian with zero mean. We want X1

to have variance 1, and we want this variance to spread evenly through time in the sense
that Xt has variance t. We can begin with a very coarse discretization where the timestep
τ has duration 1, which involves sampling X1 ∼ N (0, 1) and interpolate linearly form
t = 0 to t = 1. Then we can study the behavior as τ → 0. For any τ > 0, we simply sample
Xt+τ ∼ Xt + N (0, τ). Alternatively, we can sample (Xkτ )k∈N via a Gaussian process
with covariance kernel K(Xs, Xt) = min(s, t) [Williams and Rasmussen, 2006]. Figure 2.1
illustrates some of these samples for various values of τ .

Considering once again the filtered probability space (Ω,F , (Ft)t≥0 , µ), the criteria for a
Brownian motion (Bt)t≥0 can be stated formally as

1. B0 = 0, µ-almost surely;
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Figure 2.1: Discretized Brownian motion trajectories for various timesteps τ

2. For any 0 ≤ r < s < t, the random variable Bt − Bs is independent from Fr and is
distributed according to N (0, t− s);

3. The sample paths of (Bt)t≥0, defined as the mappings t 7→ Bt(ω) for any fixed ω ∈ Ft,
are continuous.

Proving that such a process exists is not trivial by any means. Fortunately, Brownian
motion does exist, and Le Gall [2016] can be consulted for its construction.

2.2.2 The Expressivity of Itô Diffusions

A recurring motif in this thesis will consist of a special type of stochastic differential equa-
tion known as an Itô diffusion. These are the SDEs of the following form,

dXt = a(t,Xt)dt+ b(t,Xt)dBt. (2.17)

Since the only source of noise in these types of processes is Gaussian, it may appear at first
glance that the class of solutions to Itô Diffusion SDEs is fairly limited. However, it turns
out that processes of this form converge to a very rich class of stationary distributions.
This is nicely stated in the celebrated Martingale Representation Theorem.

Theorem 2.3 (Martingale Representation Theorem, Le Gall [2016]). Consider a filtered prob-
ability space (Ω,F , (Ft)t≥0 , µ), where (Ft)t≥0 is the completed5 canonical filtration of a Brownian
motion (Bt)t≥0 where B0 = 0 almost surely. For any random variable Z ∈ L2(Ω,F∞, µ), there
exists a unique square-integrable progressive process (ht)t≥0 such that

5The completion of a σ-algebra F is the σ-algebra generated by F together with all subsets of sets A ∈ F
that have measure 0 [Le Gall, 2016].
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Z = E [Z] +

∫ ∞
0

htdBt. (2.18)

Recall the definition of the random return. Measuring time with respect to the Lebesgue
measure, the return is given by

Gπ(x) =

∫ T

0

γtr(Xt)dt.

Since r is bounded and γ < 1, Gπ(x) is obviously square integrable. Moreover, Brownian
motion has infinite variation, and particles under Brownian motion spread evenly over R.
Therefore, as long as Law (Gπ(x)) is absolutely continuous with respect to the Lebesgue
measure, we’ll have

Gπ(x) ∈ L2(Ω,F∞,Pr)

where (Ω,F , (Ft)t≥0 ,Pr) is the probability space P defined above. Therefore, any return
distribution that is absolutely continuous with respect to the Lebesgue measure can be
expressed as the stationary distribution of an Itô diffusion.

The most difficult part when dealing with stochastic differential equations (SDEs) is, un-
surprisingly, the stochastic integral. It would be desirable then if we could express a
random variable as the solution to an SDE of the form

dZt = −∇φ(t, Zt)dt+ dBt (2.19)

for some twice differentiable function φ. The SDE (2.19) is an example of Langevin dy-
namics, and the method of representing random variables via Langevin dynamics has
become popular in the machine learning literature in recent years [Welling and Teh, 2011,
Wibisono, 2018, Raginsky et al., 2017]. In the context of reinforcement learning, Zhang
et al. [2018] represents the evolution of a parameterized policy as a set of particles in pa-
rameter space under the influence of Langevin dynamics. Moreover, Martin et al. [2020]
exhibits a similar technique in the discrete-time value-based setting.

Let (Ω,F , (Ft)t≥0) be a filtered measurable space on which (Bt)t≥0 is a Brownian motion
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with respect to a probability measure µ. The following theorem will enable us to trans-
form a Brownian motion to Langevin dynamics.

Theorem 2.4 (Girsanov’s Theorem, [Girsanov, 1960]). Let (Ω,F) be a measurable space and
let (Ft)t≥0 be a filtration of F . Suppose µ, ν are measures on (Ω,F) which are absolutely contin-
uous with respect to one another on F∞. Let (Dt)t≥0 be the martingale with càdlàg6 sample paths
such that for every t ≥ 0 we have

Dt =
dν

dµ|Ft

where µ|Ft : Ft → R+ is the measure µ restricted to the domain Ft.

Let ([L,L]t)t≥0 denote the quadratic variation of (Lt)t≥0 (shown in Definition 43 of Appendix C).
Assume that D has continuous sample paths, and let L be the continuous local martingale such
that

Dt = exp

(
Lt −

1

2
[L,L]t

)

Then if M is a continuous local martingale under µ, (M − [M,L]t)t≥0 is a continuous local mar-
tingale under ν, where ([M,L]t)t≥0 is the bracket of (Mt)t≥0 , (Lt)t≥0 as shown in Definition 44 of
Appendix C.

Let ν be a probability measure on (Ω,F) that is absolutely continuous with respect to µ.
We’ll additionally impose the constraint that ν1 = Law(Z1). Girsanov’s theorem tells us
that

dν

dµ
= exp

(
−
∫ 1

0

〈∇φ(Bt, t), dBt〉 −
1

2

∫ 1

0

‖∇φ(Bt, t)‖2dt

)
(2.20)

LetMZ1 = {ν ∈ Pp (Ω) : ν1 = Law(Z1)}, where Pp (Ω) is the set of probability measures
on (Ω,F). Then we’ll define our target measure ν? by

ν? = arg min
ν∈MZ1

DKL (ν ‖ µ)

6This refers to functions that are continue à droite, limites à gauche – that is – right continuous functions
with left limits.
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The reason for this specification is that the chain rule of the KL divergence yields

DKL (ν? ‖ µ) = arg min
ν∈MZ1

[
DKL (ν1 ‖ µ1) +

∫
ν1(dx)DKL (ν(· | Z1 = x) ‖ µ(· | Z1 = x))

]
= DKL (Law(Z1) ‖ µ1)

where the final step follows since the only constraint on ν occurs at ν1, so we can minimize
the KL divergence by ensuring that µ = ν almost everywhere. But since Brownian motion
has independent increments and µ = ν almost everywhere, it follows that

dν

dµ
= %(Z1)

for some function %. Consequently, we see that dν
dµ

must correspond to the density of Z1.

Proceeding, we’d like to find a way to eliminate the stochastic integral from (2.20). Fortu-
nately, we can do so by exploiting Itô’s lemma. Let Ut = φ(Bt, t). Then

dUt =
∂φ

∂t
(Bt, t)dt+

1

2
∆φ(Bt, t) + 〈∇φ(Bt, t), dBt〉

Note that the final term above is equivalent to the integrand in (2.20). Integrating yields

U1 = U0 +

∫ 1

0

[
∂φ

∂t
(Bt, t) +

1

2
∆φ(Bt, t)

]
dt+

∫ 1

0

〈∇φ(Bt, t), dBt〉

Upon substitution into (2.20), we have

dν

dµ
= exp

(
U0 − U1 +

∫ 1

0

[
∂φ

∂t
(Bt, t) +

1

2
∆φ(Bt, t)−

1

2
‖∇φ(Bt, t)‖2

]
dt

)
(2.21)
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Recall that dν
dµ

should be expressed as a function of Z1 = B1 only. Since B0 = 0 almost
surely, it follows that the integral in (2.21) must vanish. This presents us with the follow-
ing characterization of the function φ such that Law(Z1) = ν1,

∂φ

∂t
+

1

2
∆φ− 1

2
‖∇φ‖2 = 0 (2.22)

Letting h , e−φ, we see that

0 = −∂ log h

∂t
− 1

2
∆(log h)− 1

2
‖∇(log h)‖2

=
1

h

∂h

∂t
+

1

2
∇ · ∇h

h
+

1

2

∥∥∥∥1

h
∇h
∥∥∥∥2

=
1

h

∂h

∂t
+

1

2

[
1

h
∆h− 1

h2
‖∇h‖2

]
+

1

2

∥∥∥∥1

h
∇h
∥∥∥∥2

=
∂h

∂t
+

1

2
∆h

Therefore, h = e−φ satisfies the heat equation [Harrison, 2013, Ullrich, 2011]! Explicitly, we
want to solve the following boundary value problem for a function h : X × [0, 1]→ R,

∂h
∂t

+ 1
2
∆h = 0

h(x, 1) = ψ(x)
(2.23)

where ψ encodes a terminal condition. The Feynman-Kac formula [Kac, 1949] (discussed
in §C.3) famously shows7 that (2.23) is satisfied by

h(x, t) = E [ψ(B1) | Bt = x] (2.24)

And equivalently, this provides us with the following characterization of φ,

φ(x, t) = − logE [ψ(B1) | Bt = x] (2.25)

When (2.25) is satisfied, (2.21) becomes
7In fact, (2.23) is simply a Kolmogorov backward equation, which will be discussed in more detail later in

the thesis.
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dν

dµ
= exp(U0 − U1)

= exp(φ(B0, 0)− φ(B1, 1))

= exp(logψ(B1))

= ψ

This tells us that ψ ≡ %, the density of B1 = Z1. Finally, we see that the stationary solution
of the SDE

dZt = ∇ logE [%(Z1) | Zt] dt+ dBt (2.26)

will have density %.

Remark 2.1. Notably, no convexity assumptions are necessary for this convergence.

Remark 2.2. Unlike sampling algorithms based on Markov Chain Monte Carlo (MCMC)
such as Metropolis Hastings [Hastings, 1970], we have a guarantee that at time t = 1

we’ll have an exact sample from %. However, in many cases, computing ∇E [%(Z1) | Zt]
exactly will not be tractable, and additionally simulating (2.26) will accrue error due to
time discretization.

In the statistics and machine learning literature, sampling via such Langevin diffusions is
common practice [Roberts and Stramer, 2002]. The technique has been used in particular
to extend existing algorithms to a Bayesian treatment. The Stochastic Gradient Langevin
Diffusion (SGLD) framework [Welling and Teh, 2011], for example, simulates Langevin
diffusions in parameter space to produce a Bayesian extension of Stochastic Gradient De-
scent (SGD), which is used to compute posterior distributions over large parameterized
models.

2.3 Continuous-Time Dynamics

So far, we’ve discussed algorithms that learn control policies that evolve in discrete timesteps.
While every computer program must evolve discretely in time, we may be interested (and
we will be for the sake of this thesis) in how reinforcement learning algorithms behave as
the timestep duration tends to 0. Mathematics become far more technical in this regime,
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since the infinitesimal differentials between some quantities may not be well defined. As
we’ll see below, even in the absense of any uncertainty, continuous-time optimal control
presents considerable difficulties.

2.3.1 The Deterministic Case

A well-known result from optimal control theory is that when the optimal value function
is differentiable, it satisfies the following equation,

V (x) log γ + sup
a∈A

[r(x, a) + 〈∇V (x), f(x)〉] = 0 (2.27)

where A is the action space, r : X × A → R is the reward function, ẋ(t) = f(x(t), a(t)),
and the optimal value function V (x) is defined as

V (x) = sup
a(·)∈L1(R+

∫ ∞
0

γtr(x(t), a(t))dt x(0) = x (2.28)

Equation (2.27) is known as the Hamilton-Jacobi-Bellman (HJB) equation [Fleming and
Soner, 2006].8 The HJB equation takes on a similar form to the Bellman equation, but
we note one immediate difference: the Bellman equation expresses V recursively, and the
HJB equation expresses it differentially. This is to be expected, however, since the HJB
equation can be interpreted as the limiting equation when consecutive states are sepa-
rated by an infinitesimal time in the Bellman equation. Of course, that only makes sense
if we assume that the universe does not stop and wait for us in between timesteps of
an MDP.

Rather than a recurrence relation, the HJB equation presents us with a nonlinear partial
differential equation (PDE). PDEs are notoriously difficult to solve, so already continuous-
time RL looks discouraging. However, the challenges do not stop there. Recall that the
optimal value function satisfies (2.27) if it is differentiable, but what happens when it is not
differentiable? This may seem like merely a technicality for at least a couple of reasons:

1. It may seem like we can just avoid the issue altogether by approximating the value
function somehow, and possibly weakening the notion of solutions to (2.27);

8Some texts refer to this equation as the dynamic programming equation. However, “dynamic program-
ming” refers to an algorithmic technique for solving such equations [Bellman, 1954], so we prefer to avoid
this nomenclature.
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2. Perhaps the consequences of assuming the value function is differentiable in prac-
tice are negligible?

We will proceed by showing that this phenomenon is in fact problematic both in theory
and in practice.

The following is an example due to Munos [2004]. Consider a continuous-time MDP
where

• The state space X = [0, 1];

• The action space A = {−1, 1};

• The dynamics are given by ẋ(t) = a(t) where x(·) is the state signal and a(·) is the
control signal;

• The reward function is r(x) = δ0(x) + 2δ1(x);

• Episodes run until the agent exits the interior of X .

This problem seems exceptionally simple at first glance. So simple, in fact, that we can
easily plot the optimal value function, as shown in Figure 2.2.
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Figure 2.2: Value function from Munos’ toy problem, γ = 0.3

As Figure 2.2 indicates, the value function for this problem is not differentiable every-
where. We’ll proceed by assessing our first skepticism: why can’t we just approximate the
value function by a differentiable function? As a matter of fact, we can do this, however
the approximation is far from trivial. Looking at 2.2, it is reasonable to suggest that we
simply search for V among piecewise differentiable functions, or even Sobolev spaces.
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Clearly in this case we’d still find the value function, as it is piecewise differentiable.
However, this absolutely does not solve the problem, not even for this one example en-
vironment: it is well-known that there are infinitely many functions differentiable almost
everywhere that satisfy (2.27) [Fleming and Soner, 2006]! Munos [2004] demonstrates
that solutions to the HJB equation can be vastly dissimilar to the value function. Conse-
quently, attempting to search for a solution to the HJB equation among functions that are
differentiable almost everywhere using gradient based methods is likely to converge to a
local optimum, and the local optimum can be entirely unrepresentative of the true value
function.

Fortunately, not all hope is lost. The celebrated work of Crandall and Lions [1983] intro-
duces a weak interpretation of solutions to the HJB equation, namely viscosity solutions, for
which there exists a unique solution among the space of almost-everywhere-differentiable
functions.

Definition 5 (Viscosity solution, [Crandall and Lions, 1983]). Let O ⊂ Rd be an open set.
We define set-valued functions E+, E− : C(O)→ 2O according to

E+(ψ) = {y ∈ O : y ∈ arg maxψ ∧ ψ(y) > 0}
E−(ψ) = {y ∈ O : y ∈ arg minψ ∧ ψ(y) < 0}

We consider equations of the formH(y, V,∇V ) = 0 for a continuous function H : O×R×
Rd → R. A function v ∈ C(O) is said to be a viscosity subsolution of H(y, V,∇V ) = 0 if
for every positive function φ ∈ C∞c (O) and k ∈ R we have

E+(φ(v − k)) 6= ∅ =⇒ ∃y ∈ E+(φ(v − k)) :

H

(
y, v(y),−v(y)− k

φ(y)
∇φ(y)

)
≤ 0

Similarly, a function v ∈ C(O) is called a viscosity supersolution of H(y, v,∇V ) = 0 if for
every positive φ ∈ C∞c (O) and k ∈ R we have
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E−(φ(v − k)) 6= ∅ =⇒ ∃y ∈ E−(φ(v − k)) :

H

(
y, v(y),−v(y)− k

φ(y)
∇φ(y)

)
≥ 0

Finally, a function v ∈ C(O) is called a viscosity solution of H(y, V,∇V ) = 0 if for this
equation it is both a viscosity subsolution and a viscosity supersolution. 5

The beauty of viscosity solutions lies in the fact that the optimal value function is the
unique viscosity solution for a given HJB equation [Crandall and Lions, 1983]. Based
on the stability and regularity properties of viscosity solutions, Munos [1997] presents a
convergent reinforcement learning algorithm that employs a finite-differences scheme to
solve the HJB equation.

Now we turn to our second skeptical question: does this even matter in practice? We
can answer this affirmitively by demonstration. We implement an algorithm like that de-
scribed in Munos [1997] and compare its performance to Q-learning in this toy example.
The results are shown in Figure 2.3.

Q-LEARNING FINITE DIFFERENCES

Figure 2.3: Value functions learned by a continuous-time RL algorithm and Q-Learning for Munos’ toy
example

In our experiments, we use a small timestep duration τ = 10−3 and we discretize the state
space uniformly into 100 bins. Hyper-parameter search for the optimal learning rate se-
quence was conducted identically for both algorithms. We see that Q-learning converged
to a value function with a discontinuity near the point of non-differentiability of the value
function. Consequently the value function learned by Q-learning is only approximately
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correct near the boundaries of the state space. On the other hand, the algorithm with
continuous-time corrections learns a continuous value function that approximates the
viscosity solution of (2.27) well on the entire state space.

Beyond this simple environment, Doya [2000] presents a number of algorithms that are
extensions of existing (discrete-time) RL algorithms to the continuous time setting, in-
cluding a method with differential updates based on the gradient of the value function,
and encorporating TD(λ) updates [Sutton, 1988] to reduce bias. This algorithm was re-
ported to have learned optimal controllers for complex control tasks faster than discrete-
time counterparts by a substantial amount.

2.3.2 Unveiling Problems in Discrete Reinforcement Learning

Another reason for studying reinforcement learning in the continuous-time setting is that
it forces us to recognize some of the technical challenges of reinforcement learning that
are obscured, but still present, in the discrete-time MDP model. One such example is part
of the credit assignment problem, which is the problem of determining which actions
from a given episode in an MDP contributed most to the return. This problem is cer-
tainly addressed in the reinforcement learning literature [Sutton, 1984, Arumugam et al.,
2021], however the study of reinforcement learning in continuous time demonstrates a
new challenge.

The work of Baird III [1993] presents an interesting challenge for credit assignment when
the timestep is small (or infinitesimal). For systems evolving continuously in time, we ex-
pect different controls to have similarQ-values at a given state – that is, individual actions
should not perturb the overall return too greatly. In fact, it is shown in Baird III [1993]
and formally proved in Tallec et al. [2019] that as the timestep shrinks, the Q-function
may completely disregard the action altogether. In that case, Q-learning at the very least
should be expected to learn extremely slowly, if at all. In order to correct this, the Ad-
vantage Updating algorithm is presented, where “advantage” functions are learned as op-
posed to Q-functions, and the advantage functions A are related to the Q-functions via

A(x, a) =
1

τ

(
Q(x, a)−max

a′∈A
Q(x, a′)

)
(2.29)

where τ is the duration of the timestep. By effectively scaling Q-functions by τ−1, the ad-
vantage functions do not lose information about actions in the continuous time limit, and
Baird [1994] reports that advantage learning converged 105 times faster than Q-learning
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in their experiments. The work of Bellemare et al. [2016] develops further on this idea
by demonstrating a class of “consistent” Bellman-like operators, and empirical results in
complex experiments using consistent updates substantially improve over previous sim-
ilar RL algorithms.

Another approach to solving the continuous-time credit assignment problem was recently
suggested by Kim et al. [2021], which presents the Hamilton-Jacobi Deep Q Network (HJ-
DQN). This framework allows us to perform value-based RL when the action space is
continuous, under the assumption that the control signal is Lipschitz-continuous in time.
This assumption effectively means that the control is not changing too quickly, so the in-
dividual controls have more influence on the final return. Moreover, by the definition of
Lipschitz-continuity, the time-derivative of the control signal is bounded by some con-
stant L and we can determine the optimal action at each timestep (even though there are
infinitely many candidates!) by

ȧ(t) = L
∇aQ(x, a)

‖∇aQ(x, a)‖

Simply put – we must determine the direction in action space that maximizes the Q-
function most quickly by computing the a-gradient of the Q function, and then perturb
the control as much as we’re allowed to by the Lipschitz constraint in that direction.

A similar feat can be accomplished if we make an alternative assumption that the dy-
namics are control-affine, meaning ẋ(t) = f(x(t)) + 〈g, a(t)〉 for some linear operator g and
arbitrary function f . In particular, under this class of dynamics, value-maximizing ac-
tions can be computed in closed form even when the action space is uncountable [Tassa
and Erez, 2007]. Recently, this idea was applied with great success in the Continuous Fit-
ted Value Iteration (cFVI) algorithm [Lutter et al., 2021b] and in the Robust Fitted Value
Iteration (rFVI) algorithm [Lutter et al., 2021a].

The study of Tallec et al. [2019] also discusses what is a seemingly un-explored parameter
of reinforcement learning models: the length of the timestep. Even when the timesteps
are not miniscule, it is not unreasonable to suspect that RL algorithms might perform
differently due to changes in the timestep length. In fact, their work shows that existing
discrete-time value-based RL algorithms are quite sensitive to the time discretization pa-
rameter, while continuous-time RL algorithms tend to be much more stable. This on its
own demonstrates the importance of studying RL in the continuous-time limit.
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2.3.3 The Stochastic Case

Continuous-time optimal control of a system governed by stochastic dynamics has been
thoroughly studied [Fleming and Soner, 2006]. In most of the literature, the Markov pro-
cesses underlying the evolution of the system are assumed to be Itô Diffusions (shown in
§2.2.2), and this will be the case in the remainder of this thesis as well.

In the stochastic control setting, the HJB equation is not quite the same as (2.27) – this is
mainly due to the extra second-order term that emerges by Itô’s lemma, shown in (C.2).
Deriving the corresponding equation, however, can be done trivially by exploiting the
Feynman-Kac formula, shown in Appendix C.3. Simply by observation, for any fixed
policy π we have

V π(x) = E

[∫ ∞
0

γtr(Xt, At)dt

∣∣∣∣ X0 = x,At ∼ π(· | Xt)

]

According to the Feynman-Kac formula, this is the exact form of the solution to the PDE

0 = 〈∇xV
π(x), fπ(x)〉+

1

2
Tr
(
σσσπ(x)>HxV

π(x)σσσπ(x)
)

+ V π(x) log γ (2.30)

where the state process (Xt)t≥0 is governed by the Itô diffusion

dXt = fπ(Xt, At)dt+ σσσπ(Xt)dBt.

Existing continuous-time reinforcement learning algorithms have been adapted to ac-
count for (2.30). A great example is the algorithm introduced in Munos and Bourgine
[1997], which extends the finite differences algorithm from Munos [2004] by deriving a
finite differences scheme to account for the second order term σσσπ(Xt)

>HxV
π(x)σσσπ(Xt).

More recently, stochastic control algorithms with powerful function approximation have
been studied, using techniques such as the construction of forward-backward SDEs to al-
low for efficient backpropagation [Pereira et al., 2019] and importance sampling via Gir-
sanov’s theorem to accounting for off-policy learning [Exarchos and Theodorou, 2018].
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2.4 Distributional Reinforcement Learning

In many applications of machine learning, it is desirable to understand the uncertainty
involved in predictions from a model. For instance, in robotics applications it is usu-
ally a good idea to use knowledge of uncertainty to provide safety margins in order to
prevent serious damages, and in clustering algorithms we can assign to each datapoint
a distribution over possible categories. The young field of distributional reinforcement
learning takes uncertainty modeling to the core object of interest in value-based RL: the
value function itself.

More formally, the idea behind distributional RL is to model the probability distribu-
tion of random returns as opposed to just its expected value. While this idea may seem
innocuous at first glance, estimating return distributions presents a plethora of mathe-
matical challenges.

Recall that a popular technique for learning the value function in RL is to derive a contrac-
tive operator on the space of value functions and invoke the Banach fixed-point theorem
to prove that repeated applications of this operator will yield the value function. Already,
to bridge this technique to the distributional framework, we are immediately faced with
problems that must be addressed:

1. Can the return distribution function be expressed as the fixed point of an operator?

2. What is a contraction on the space of probability measures, and in particular, what
does it mean for probability measures to be close to each other?

3. What is an optimal return distribution function?

In the seminal work of Bellemare et al. [2017a], some of these questions are answered.
By extending the results concerning analysis of fixed points on the space of distributions
due to Rösler [1992], Bellemare et al. [2017a] shows that the return distribution does in-
deed satisfy a fixed-point equation for a distributional extension of the Bellman operator.
However, in order to satisfy a fixed point equation of any kind, we must be clear about
the metric space that we are analyzing. As it turns out, the distributional Bellman opera-
tor is not contractive for several familiar topologies on the space of probability measures
[Bellemare et al., 2017a], such as the total variation distance and the Kullback-Leibler (KL)
divergence9.

An illustrative example of this, inspired by an example given by Professor Prakash Panan-

9The KL divergence is actually not a metric, as it is not symmetric. However, there are many ways to
construct metrics out of the KL divergence that preserve its properties.
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gaden in a talk at Mila, is as follows. Suppose there exists a state x in an MDP for which
the return is deterministically some number y, so its return distribution is η(· | x) = δy.
Let’s say we’re estimating this distribution by a distribution µ(· | x) = δz. As long as
z 6= y, the total variation distance between µ(· | x) and η(· | x) is given by

TV(µ, η) ,
1

2
sup
A∈F
|µ(A | x)− η(A | x)| = 1

where F is the σ-algebra associated with the measurable space of interest. Notably, re-
gardless of how far z is from y (note that this notion of distance is familiar, since y, z ∈ R),
the learning signal according to the total variation distance is always 1! That is, total vari-
ation distance would tell us that the probability distributions δ1.0001 and δ107 are equidis-
tant from δ1, for example. Clearly, this does not capture the notion of similarity between
probability distributions that we expect in reinforcement learning.

An insight from the previous example is that the notion of distance between probability
measures in Pp (W) should be related in some way to the topology ofW . This is captured
nicely by the Wasserstein distances [Villani, 2008].

Definition 6 (Wasserstein distance). Let (W , d) be a metric space and (W ,F) a measurable
space over which µ, ν are measures. A (probabilistic) coupling between µ, ν is a proba-
bility measure π on the product spaceW ×W such that µ = (id,W)]π and ν = (X , id)]π –
that is, the marginals of π are µ, ν respectively.

Suppose W is a normed space, and let Π denote the set of all couplings of measures in
Pp (W). For p ∈ {1, . . . , }, the p-Wasserstein distance dWp is defined as

dWp(µ, ν) = min
π∈Π

(∫
W×W

‖x− y‖pdπ(x, y)

)1/p

Note that the “optimal coupling” satisfying the minimization above always exists, and
dWp is a metric over Pp (W) [Villani, 2008].

The metric space (Pp (W) , dWp) is denoted by Wp (W). 5

In the notation of Rowland et al. [2019], Bellemare et al. [2017a] shows that the distribu-
tional Bellman operator T π : Pp (R)→ Pp (R) defined as
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T π η(· | x, a) = E
x′∼P (·|x,a)
a′∼π(·|x′)

[
f r,γ] η(· | x′, a′)

]
f r,γ(ξ) = r + γξ,

is a contraction in a “supremal form” dWp of the p-Wasserstein metric,

dWp(µ, ν) = sup
x∈X
a∈A

dWp(µ(· | x, a), ν(· | x, a)).

In the same work, it is shown that dWp is indeed a metric on the space of functions with
the type signature X ×A → Pp (R).

At the time, there was no known, tractable method for computing gradients of Wasser-
stein distances from samples [Bellemare et al., 2017b], so consequently the C51 algorithm
presented in Bellemare et al. [2017a] worked by backpropagating gradients of the KL di-
vergence, despite the negative theoretical results. C51 was tremendously successful, and
to this day it contributes positively to state of the art deep reinforcement learning models
[Hessel et al., 2018].

Soon after, Dabney et al. [2018a] discovered a method for minimizing the 1-Wasserstein
metric from samples by exploiting a property of Wasserstein distances over the reals
[Thorpe, 2018, Theorem 2.1] and performing quantile regression [Koenker and Bassett Jr,
1978]. This resulted in another exceptional deep RL algorithm, known as QR-DQN, which
also maintains its presence in state of the art models [Bellemare et al., 2020].

Following this, Rowland et al. [2019] constructs a framework for proper return distri-
bution learning by distinguishing return distribution samples from return distribution
statistics. In this work, methods of representing probability measures as functions of
their statistics are characterized according to how well they can approximate fixed points
of certain distributional operators, including the distributional Bellman operator. This
analysis partly explains the great empirical performance of C51 given its deviation from
the theory of distributional RL.

There have since been many developments in distributional RL concerning representa-
tions of the return distributions, as will be discussed later in §4.1. Additionally, distribu-
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tional RL has been studied as a tool for promoting exploration in RL [Mavrin et al., 2019]
as well as safe exploration [Zhang and Weng, 2021].

Aside from the contributions of this thesis, distributional RL in continuous time has only
been studied by the concurrent work of Halperin [2021], which focuses mainly on risk-
sensitive RL in continuous time and provides no algorithms for learning return distribu-
tion functions.

2.5 Gradient Flows in Abstract Metric Spaces

This section will delve into a formalism for studying certain iterative refinement algo-
rithms in the limit as the iterations occur continuously in time. In Chapter 4, we will
use this formalism to describe a continuous-time extension of policy evaluation. We will
make extensive use of the topological concepts of Appendix A, particularly §A.1 where
metric spaces are defined. More in-depth treatments of the topics in this section can be
found in Ambrosio et al. [2008], Santambrogio [2015], and Villani [2008].

As we saw in §2.1.3, a common approach to solving the Bellman equation is by itera-
tively applying an operator to an initial guess of the value function until a fixed point is
reached. However, such an iterative method is a discrete-time operation by its very na-
ture. When developing continuous-time RL algorithms later in the thesis, we will look at
the “continuous-time” limit of such an iterative algorithm. Purely for the sake of building
intuition, we can think of this continuous-time limit as a solution to the Cauchy prob-
lem[Ambrosio et al., 2008],

 ∂
∂t
v(t, ·) = −∇F (v(t, ·))

v(0, x) = V0(x)
(2.31)

where v(t, ·) ∈ V represents the estimate of the value function at time t among the class
of value functions V , F : V → R is a loss functional, and V0 ∈ V is the initial guess of
the value function. In Q-Learning, we update estimates of the Q-function so as to mini-
mize the squared error between Q and T Q, so we may interpret (2.31) as a continuous-
time process during which the value function v(t, ·) moves in the direction of the steepest
descent of the error signal it incurs. More succinctly, this represents a continuous-time
extension of gradient descent, which is called a gradient flow.

However, in a general metric space, the Cauchy problem has no meaning, and conse-
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quently we must consider an alternative formulation in order to make sense of the Cauchy
problem in spaces without much algebraic structure. If we look more closely at (2.31), we
note that neither of its two terms have any proper meaning when V is an arbitrary met-
ric space [Ambrosio et al., 2008]. Indeed, the familiar definition of the time derivative
would be expressed as ∂

∂t
v(t, ·) = limδ→0

1
δ
(v(t + δ, ·) − v(t, ·)), and this requires that V is

closed under an invertible, associative binary operation as well as scalar multiplication
(i.e, V should be a vector space). This condition of course is not satisfied when it is only
assumed that V is a metric space.

While such an issue may seem like an unnecessary technicality, it most certainly is not. A
relevant example that demonstrates why this abstraction is necessary is when V is a space
of return distribution functions. One must be very careful when performing algebraic
operations on such objects – most often return distribution functions do not form a vector
space. Suppose η ∈ V and |α| 6= 1. Then since η(R | x) = 1 by definition, we must have
αη(R | x) 6= 1, so αη is not a probability measure, and it follows that V is not closed under
scalar multiplication. Thus, certainly for the purpose of this thesis, we must study an
abstraction of gradient flows to general metric spaces.

2.5.1 Evolution Variational Inequality

A clever way to deal with generalizing the gradient flow formulation involves expressing
the gradient flow in a simple metric space (say, a Hilbert space) by an equivalent identity
comprised solely of metric operations. Since the resulting expression is equivalent to a
gradient flow, it provides a meaningful notion of a gradient flow in spaces that don’t
necessary have a vector space structure. Generally, this requires invoking assumptions
on F .

A very useful characterization is known as an evolution variational inequality [De Giorgi
et al., 1980]. We begin by assuming that V is a Hilbert space and F is λ-convex [Santam-
brogio, 2015], meaning that for every ψ ∈ V , we have

F (ψ) ≥ F (φ(t)) +
λ

2
‖φ(t)− ψ‖2 + 〈p, ψ − φ(t)〉

where φ : R+ → V and p is in the subdifferential of F evaluated at φ(t). If φ is a solution
to the Cauchy problem (2.31), then p = − ∂

∂t
φ(t). It follows that
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F (ψ) ≥ F (φ(t)) +
λ

2
〈φ(t)− ψ, φ(t)− ψ〉 − 〈φ′(t), ψ − φ(t)〉

Moreover, note that

1

2

∂

∂t
‖φ(t)− ψ‖2 =

〈
∂

∂t
(φ(t)− ψ), φ(t)− ψ

〉
=

〈
∂

∂t
φ(t), φ(t)− ψ

〉

So, when F is λ-convex and φ solves the Cauchy problem, we have

F (ψ) ≥ F (φ(t)) +
λ

2
‖φ(t)− ψ‖2 +

1

2

∂

∂t
‖φ(t)− ψ‖2

Finally, noting that ‖x − y‖2 = d2(x, y) where d is the metric in the Hilbert space V , we
have

1

2
d2(φ(t), ψ) ≤ F (ψ)−F (φ(t))− λ

2
d2(φ(t), ψ) (2.32)

Equation (2.32) is known as the EVIλ inequality. Note that this inequality is expressed
only in terms of metric quantities, so it is a suitable characterization of a gradient flow in
abstract metric space as long as the concept of λ-convexity can also be defined in terms of
metric quantities. Fortunately, it is known [Muratori and Savaré, 2018] that F is λ-convex
if and only if for every φ, ψ ∈ V there exists a geodesic10 (%t)t∈[0,1] with %0 = φ and %1 = ψ

such that
10A geodesic between two points is a curve between those points for which the arc length of the curve

according to the space’s metric is minimal.
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F (%t) ≤ (1− t)F (φ) + tF (ψ)− λ

2
t(1− t)d2(φ, ψ) (2.33)

Note that when λ > 0, which we generally desire, λ-convexity is a stronger property than
convexity. Hence, we will consider the following characterization of gradient flows.

Definition 7 (Abstract Gradient Flow). Let (V , d) be a metric space, and let φ : R+ → V
be a curve in V . If F is λ-convex in the sense of (2.33) and φ satisties the EVIλ inequality
(2.32), then φ is said to be a (EVI-type) gradient flow of F . 5

An attractive property of EVI-type gradient flows is that they satisfy a contraction prop-
erty, which will play an analogous role to contraction mappings in discrete-time analy-
sis. This suggests that EVI-type gradient flows are a promising candidate for describing
continuous-time policy evaluation.

Theorem 2.5 (Uniqueness of Gradient Flows, [Santambrogio, 2015]). Let (V , d) be a metric
space. If two curves φ, ϕ : R+ → V satisfy the EVIλ inequality (2.32) for some λ ≥ 0 and a
λ-convex functional F , then

d

dt
d2(φ(t), ϕ(t)) ≤ −2λd(φ(t), ϕ(t))

Then, by Grönwall’s lemma [Gronwall, 1919], it follows that

d(φ(t), ϕ(t)) ≤ e−λtd(φ(0), ϕ(0))

This shows that any two EVI-type gradient flows for a common λ-convex loss func-
tional will eventually coincide. Consequently, if continuous-time policy evaluation can
be framed as an EVI-type gradient flow, we can be assured that the continuous-time pol-
icy evaluation process will converge to a unique fixed point (say, the return distribution
function). The work of Martin et al. [2019] exploits this concept to formulate distribu-
tional policy evaluation of a discrete-time process as an EVI-type gradient flow, and we
will develop this idea further in Chapter 4 for continuous-time policy evaluation.

2.5.2 Wasserstein Gradient Flows

In §2.4 we defined the Wasserstein distance as a convenient distance measurement be-
tween probability measures in distributional RL. It is a beautiful result from optimal
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transport theory that the Wasserstein distances are proper metrics over spaces of prob-
ability measures [Villani, 2008]. For a metric space (V , d), the metric space (Pp (V) , dWp)

(with dWp having the same definition as in definition 6) is called the p-Wasserstein space,
and it is denoted by Wp.

Among all Wasserstein spaces, the space W2 is by and large the most convenient for the
analysis of smooth curves in the space of probability measures [Santambrogio, 2016]. For
this reason, the analysis of gradient flows in probability measure space is often conducted
in W2, and the term Wasserstein Gradient Flow (WGF) almost exclusively refers to gradient
flows in W2 specifically.

Perhaps the most celebrated result in the study of WGFs is that of Jordan, Kinderlehrer,
and Otto [Jordan et al., 2002], known as the JKO scheme. As an overview, the result is
comprised of the following points:

1. The Fokker-Planck equation, which is a widely studied PDE in physics and is given
by

∂

∂t
%(t, x) = − ∂

∂x
(µ(x, t)%(x, t)) +

∂2

∂x2

(
σ2(t, x)%(t, x)

)
(FP)

where µ, σ are known and σ is positive definite, satisfies the continuity equation

∂

∂t
%(t, x) +∇x · (%(t, x)v(t, x)) = 0 (CE)

for some vector field v, which characterizes the conservation of mass of the process
%. If we think of %(t, ·) as a probability density, this means that we can interpret
(FP) as an equation governing the evolution of a probability density that conserves
measure.

2. The Fokker-Planck equation (FP) for a constant σ is the Cauchy problem associated
to the Wasserstein gradient flow of the functional F given by

F (%(t, ·)) =

∫
X
U(x)%(t, dx)− σH(%(t, ·)) (FPWGF)

where v(t, x) = −∇U(x).

3. The loss functional (FPWGF) can equivalently be written as F (%(t, ·)) = DKL (%(t, ·) ‖ µ)

where
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µ(x) =
1

Z
e−U(x)

Z ,
∫
X
e−U(x)dx

Thus, the Fokker-Planck equation can be interpreted as the evolution of a probabil-
ity density towards µ in the sense of KL divergence. Naturally, it follows that µ is
the stationary solution of (FP).

4. Following the analysis of generalized minimizing movements schemes [De Giorgi,
1993], it is shown that under an appropriate time discretization (discussed further
in §4.2), for any timestep τ , sequences given by

%τk+1 ∈ arg min
ν∈W2

[
F (ν) +

1

2τ
d2
W2

(ν, %τk)

]

satisfy limτ→0 %
τ
k → µ, where convergence is attained with respect to dW2 . The JKO

scheme refers to the process of approximately solving (FP) by iteratively comput-
ing terms of the sequence {%τk}∞k=1 for small τ , where %τ0 is an arbitrary probability
density. Notably, this approximation converges to the true gradient flow as τ → 0.

In the context of reinforcement learning, this result is very useful, as it describes a con-
vergent method to solve a Cauchy problem discretized in time that is similar to dynamic
programming. This will be the focus of §4.2.



3
Evolution of Return Distributions

We will now shift our focus to formally representing the return distribution function for
an RL agent evolving continuously in time with a fixed behavioral policy. In order to do
so, it will be necessary to impose some structural and regularity properties on the dy-
namics of the environment and on the return distributions. More concretely, the chapter
is structured as follows,

• A formalism of continuous-time Markov processes will be given;

• The random return is formulated as a special type of Markovian process in §3.1;

• A distributional analogue to the HJB equation (see equation (2.30)) is derived in
§3.2.

In order to model stochastic trajectories in continuous time, we will use the language
of stochastic processes and stochastic differential equations as discussed in §2.2 and Ap-
pendix C. Moreover, we must discuss what it means for a continuous-time process to be
Markovian.

Definition 8 (Markov Process, Rogers and Williams [1994]). Let (Xt)t≥0 be a stochastic
process in the filtered probability space (Ω,F , (Ft)t≥0,Pr). A Markovian transition kernel is
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a kernel with a continuous parameter t, Pt : Ω × F → [0, 1], such that for any bounded
F-measurable function f , we have

(Ptf)(Xs) = E [f(Xs+t) | Fs] Pr−almost surely (3.1)

A collection (Pt)t≥0 of Markovian transition kernels is called a transition semigroup1 when

1. For each t ≥ 0 and x ∈ Ω, Pt(x, ·) is a measure on F and Pt(x,Ω) ≤ 1;

2. For each t ≥ 0 and Γ ∈ F , the mapping Pt(·,Γ) is F-measurable; and

3. (The Chapman-Kolmogorov Identity) For each s, t ≥ 0,each x ∈ Ω, and each Γ ∈ F ,
the collection satisfies

Ps+t(x,Γ) =

∫
Ω

Ps(x, dy)Pt(y,Γ)

Then PtPs = Pt+s, so (Pt)t≥0 is indeed a semigroup.

A Markov process is a stochastic process (Xt)t≥0 together with a transition semigroup
(Pt)t≥0 such that (3.1) holds. 5

Beyond the Markovian property, we will further require that the trajectory of the agent
is “regular enough” for us to study its instantaneous dynamics. In particular, we will
assume henceforth that the trajectory of the agent is a Feller-Dynkin process.

Definition 9 (Feller-Dynkin Process, Infinitesimal Generator, Rogers and Williams [1994]).
Consider a filtered probability space (Ω,F , (Ft)t≥0,Pr) and let X be a Polish2 space. A
transition semigroup (Pt)t≥0 is said to be a Feller semigroup if

1. Pt : C0(X )→ C0(X ) for each t ∈ R+;

2. For any f ∈ C0(X ) with f ≤ 1, Ptf ∈ [0, 1];

3. PsPt = Ps+t and P0 = id;

4. For any f ∈ C0(X ), we have ‖Ptf − f‖ t↓0−→ 0.

A Markov process with a Feller semigroup is called a Feller-Dynkin process.

1This name emphasizes the semigroup nature of the collection of transition kernels. In the abstract
algebra literature, a semigroup is a set of objects that is closed under an associative binary operation.

2A Polish space is a complete metric space that has a countable, dense subset.



Define the set D(L ) according to

D(L ) =
{
f ∈ C0(X ) | ∃g ∈ C0(X ) such that ‖δ−1(Pδ − f)− g‖ δ↓0−→ 0

}
The infinitesimal generator of a Feller-Dynkin process is the operator L : D(L ) → C0(E)

where

L f = lim
δ→0

Pδf − f
δ

and D(L ) is called the domain of the infinitesimal generator L . 5

Remark 3.1. Note that Itô diffusions with Lipschitz-continuous coefficients are Feller-
Dynkin processes [Le Gall, 2016].

We consider a continuous-time MDP (X ,A, r, (Pt), γ) where X ⊂ Rd is compact, (Pt) is
a Feller semigroup with infinitesimal generator L , r : X → Rrew ⊂ R, and γ ∈ (0, 1).
Additionally, we impose a mild assumption on the reward function.

Assumption 3.1. The rangeRrew of r is contained in an interval [Rmin, Rmax], where |Rmin|, |Rmax| <
∞.

When assumption 3.1 is satisfied, we make the following observations regarding the ex-
trema of the return,

J (x) =

∫ ∞
0

γtr(Xt)dt

∣∣∣∣ X0 = x

Vmin , inf J (x) ≥
∫ ∞

0

γtRmindt

=
1

log 1
γ

Rmin

Vmax , sup J (x) ≤
∫ ∞

0

γtRmaxdt

=
1

log 1
γ

Rmax

This confirms that the discounted return will be bounded. We refer to the set R =

[Vmin, Vmax] as the return space.



In order to give a formal treatment of the stochastic processes generated by the agent
interacting with its environment, we must specify a filtration. In particular, we will be
interested for the most part in the canonical filtration. The canonical filtration is the
filtration (Ft)t≥0 where Ft is the sub-σ-algebra generated by the trajectory observed up to
time t. Naturally, Ft ⊂ Ft+δ for any δ > 0.

We will perform analysis of the continuous-time MDP on a filtered probability space P =

(Ω,F , (Ft),Pr), where

• Ω ⊂ ∪n≥0(R+ ×X ×A×Rrew)n is the sample space of trajectories in the MDP;

• F is a σ-algebra over Ω;

• (Ft)t≥0 is the canonical filtration.

We denote by ηπ : X → Pp (A) the return distribution function, which is defined via

Law (Gπ
x) = ηπ(· | x),

whereGπ
x is the random variable representing the discounted return obtained by an agent

starting at state x ∈ X and following a policy π. The objects ηπ(· | x) are understood as
probability measures. We will also require some assumptions on the regularity of the
return distribution function, which are stated below.

Assumption 3.2. At every state x ∈ X , the return distribution ηπ(· | x) is absolutely
continuous (as a measure over the return space) with respect to the Lebesgue measure.

Assumption 3.3. The return distribution function is twice differentiable over X × R al-
most everywhere, and its second partial derivatives are continuous almost everywhere.

Furthermore, we will occasionally want to analyze some less abstract Markov processes.
In these cases, we will refer to the following assumption.

Assumption 3.4 (Diffusion dynamics). The Markov process (Xt)t≥0 ⊂ X ⊂ Rd induced
by the agent following a fixed (stochastic) policy π is an Itô diffusion evolving according
to

dXt = fπ(Xt)dt+ σσσπ(Xt)dBt (3.2)

where fπ : X → X , σσσπ : X → Rd×d are Lipschitz-continuous, σσσπ is positive semidefinite,
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and Bt is a Brownian motion.

3.1 The Stochastic Process of Truncated Returns

We would like to understand how estimates of the random return should evolve over
time. Unfortunately, a function mapping states to (random) returns cannot be progres-
sively measurable, as it requires knowledge of an entire trajectory to be computed. There-
fore, we will not be able to study random returns directly with the machinery of stochastic
calculus. Instead, we’ll introduce another stochastic process as a “gateway” to the ran-
dom return.

Definition 10 (The Truncated Return Process). Let (X ,A, r, (Pt), γ) be a continuous-time
MDP. The truncated return process is a stochastic process (Jt)t≥0 ∈ X ×R given by

Jt = (Xt, Gt) Gt =

∫ t

0

γsr(Xs)ds

The values Gt are simply the discounted rewards accumulated up to time t, and G0 ≡ 0.
5

Proposition 1. The truncated return process (Jt)t≥0 is a Markov process with respect to the
canonical filtration.

Proof. Let ψ ∈ C(X × R;R) and h > 0. As usual, we denote the canonical filtration by
(Ft)t≥0. By the definition of the truncated return process,

E [ψ(Jt+h) | Ft] = E
[
ψ(Xt+h, Gt+h)

∣∣ Ft]
= E

[
ψ

(
Xt+h, Gt +

∫ t+h

t

γsr(Xs)ds

) ∣∣∣∣ Ft]
= E

[
ψ

(
Xt+h, Gt +

∫ t+h

t

γsr(Xs)ds

) ∣∣∣∣ Jt]
where the final step holds since the process (Xt)t≥0 is assumed to be Markovian. Thus,
we’ve shown that for any ψ ∈ C(X ×R;R), there exists a function m : X ×R → R where

E [ψ(Jt+h) | Ft] = m(Xt, Gt)

Therefore, the process (Jt)t≥0 is Markovian.
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It will be helpful to think of the random return in terms of the truncated return pro-
cess. To do so, we’ll need to formalize the concept of a trajectory terminating at a non-
deterministic time.

Definition 11 (Stopping time, [Le Gall, 2016]). Let (Ω,F , (Ft)) be a measurable space with
filtration (Ft). A random variable T : Ω→ R+ is called a stopping time with respect to the
filtration (Ft) if

{T ≤ t} ∈ Ft t ≥ 0

We define the σ-algebra of the past before T as the σ-algebra FT given by

FT = {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft}

5

Since trajectories are assumed to be Markovian, it is natural to expect their termination to
occur once the agent has reached a state from some set of terminating states.

Assumption 3.5 (Terminating states). The continuous-time MDP (X ,A, r, (Pt)t≥0 , γ) ad-
mits a measurable set G ⊂ X , referred to as the terminating states, such that trajectories
terminate when the agent reaches any state x ∈ G.

We will confirm that the random termination time corresponding to the first entry of
(Xt)t≥0 into G is a stopping time.

Proposition 2. Consider a filtered probability space (Ω,F ,Pr). Let T denote the first time that
an agent enters a state among a fixed measurable set of terminating states G, so

T = inf
t≥0
{Xt ∈ G}

Then if µ(T <∞) = 1, T is a stopping time with respect to the canonical filtration.

Proof. The proof is simple. For any ε > 0, there exists t′ ∈ R such that Pr(T > t′) ≤
ε. Thus, with probability at least 1 − ε, T lies in the compact set [0, t′]. Therefore, the
function t 7→ t1[Xt∈G] almost surely attains its infimum. Since the characteristic function
ω 7→ χG(Xt(ω)) = 1[Xt(ω)∈G] is Ft-measurable, it follows that inft≥0{T ≤ t} ∈ Ft, so T is a
stopping time.

In the remainder of the thesis, we will be interested in the random (discounted) return Gπ
x

starting at a state x ∈ X and following the policy π. Gπ
x is a random variable due to the
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fact that the state transitions are random. We define it as follows,

Gπ
x =

∫ T

0

γtr(Xt)dt

∣∣∣∣ X0 = x (3.3)

It’s clear that

GT
L
=Gπ

x

∣∣∣ X0 = x

The reason for studying the process (Gt)t≥0 as opposed to Gπ
x is that (Gt)t≥0 is adapted to

the canonical filtration, whereas Gπ
x is only measurable with respect to F∞.

In temporal difference learning, we perform approximate dynamic programming to solve
the Bellman equation by using the difference between the value function at a given state
and the estimated value bootstrapped by the value function at the next state as a learning
signal. However, in continuous time, the notion of a “next state” is meaningless. Instead,
we study the rate of change of the value function and approximately solve the resulting
PDE. This leaves another glaring question though: how should one measure or interpret
the rate of change of a noisy (stochastic) signal? To answer this, we must first introduce
some regularity conditions on the dynamics of the stochastic processes in question.

The following theorem, due to Kolmogoroff [1931], will be instrumental in the sequel. A
proof is given for clarity.

Theorem 3.1 (Kolmogorov Backward Equation). Let (Xt)t≥0 ⊂ O be a Feller-Dynkin process
for a metric space O ⊂ X and consider the probability space (Ω,F , (Ft),Pr). Denote by T

the infimum over times t for which Xt 6∈ O. For any measurable function φ that is absolutely
continuous and differentiable almost everywhere, the function u(x, s) = E[φ(XT ) | Xs∧T = x]

solves the PDE

∂u(x, s)

∂s
= −L u(x, s) (3.4)

with the terminal condition u(x, t) = φ(x) when x ∈ O\O, where L is the infinitesimal generator
of the process (Xt)t≥0.

In order to prove Theorem 3.1, the following lemma will be handy.

Lemma 3.1 ([Le Gall, 2016], Theorem 6.14). Let (Xt)t≥0 be a Feller-Dynkin process on a metric
space X , and consider functions h, g ∈ C0(X ). The following two conditions are equivalent:
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1. h ∈ D(L ) and L h = g;

2. For each x ∈ X , the process

h(Xt)−
∫ t

0

g(Xs)ds

∣∣∣∣ X0 = x

is a martingale with respect to the filtration (Ft).

Proof of Theorem 3.1. By Lemma 3.1, we know that the process Φt = φ(Xt)−
∫ t

0
g(Xs)ds is a

martingale with respect to (Ft). Let s < t < T . By the definition of a martingale, we have

0 = E [ΦT | Ft]−E [ΦT | Fs] = E

[
h(XT ) +

∫ T

0
g(Xr)dr

∣∣∣∣ Ft]−E

[
h(XT ) +

∫ T

0
g(Xr)dr

∣∣∣∣ Fs]
E [h(XT ) | Ft]−E [h(XT ) | Fs] = E

[∫ t

s
L h(Xr)dr

∣∣∣∣ Ft]

Dividing through by t− s and taking the limit as s ↑ t,

∂

∂s
E [φ(XT ) | Fs] =

∂

∂s
u(x, s)

(a)
= E

[
∂

∂s

∫ t

s

L φ(Xr)dr

∣∣∣∣ Ft]
= −E [L φ(Xr)dr | Fs]
(b)
= −LE [φ(Xs) | Fs]

= −L u(x, s)

Step (a) is allowed by the Leibniz integration rule since the infinitesimal generator pre-
serves continuity and φ is absolutely continuous by assumption. Finally, step (b) is al-
lowed by the linearity of expectation, since L is a linear operator.

Of particular interest is the case where φ(ξ;A) = χA(ξ) for any Borel set A, where χA(a) =

1[a∈A] is the characteristic function for A. With our truncated return process (Jt)t≥0, we
have

ut(z;A) , E
[
χA(GT )

∣∣ Ft] = Pr(GT ∈ A | Xt = x,Gt = ξ) z = (x, ξ) (3.5)

Since JT = (XT , GT ) and GT = Gπ
x is understood to be the “truncated”3 return at the

3Of course, since GT is the discounted return at the end of the episode, nothing is actually truncated.
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end of a rollout, u can be interpreted as the probability measure over returns starting at a
given state!

3.2 A Characterization of the Return Distributions

We’re now ready to demonstrate that the return distribution function can be expressed as
a solution to a Kolmogorov backward equation.

Theorem 3.2 (Distributional HJB Equation for Policy Evaluation). Let (X ,A, r, (Pt)t≥0 , γ)

be a continuous-time MDP on which a truncated return process (Jt)t≥0 is generated by following
a policy π. Suppose (Xt)t≥0 = (ι1Jt)t≥0 is a Feller-Dynkin process, and denote its infinitesimal
generator by LX . Recall that the return distribution function is defined such that

Gπ
x ∼ ηπ(· | x)

where Gπ
x is the random return as defined by (3.3), and suppose Assumptions 3.1, 3.2, 3.3, and 3.5

hold.

Consider the probability space (Ω,F , (Ft)t≥0 ,Pr) where (Ft)t≥0 is the canonical filtration. Then
Fηπ satisfies the following PDE,

(LXFηπ(·, z))(x)− (r(x) + z log γ)
∂

∂z
Fηπ(x, z) = 0 Pr−almost surely (3.6)

where Fηπ(x, z) = ηπ([Vmin, z] | x).4

To aid in the proof of this theorem, we’ll first prove some lemmas.

Lemma 3.2. Let (Jt)t≥0 = (Xt, Gt)t≥0 be the truncated return process defined in Theorem 3.2.
Then

(
Gt

)
t≥0

is a finite variation process.

Proof. By definition, we have

Gt =

∫ t

0

γsr(Xs)ds

Consider the measurable space (R+,Σ) where Σ is the σ-algebra of Lebesgue-measurable
subsets of the nonnegative reals, and let Λ denote the Lebesgue measure. We will use

4Note that Fηπ (x, ·) is the CDF of the random return at state x.



3.2. A CHARACTERIZATION OF THE RETURN DISTRIBUTIONS

(R+,Σ) to measure time. By the Radon-Nikodym theorem, for each sample path ω ∈ Ω

(see Theorem 3.2), the function µω : Σ → R shown below is a signed measure on this
measurable space,

µω(A) =

∫
A

γs∧T (ω)r(Xs∧T (ω)(ω))Λ(ds) A ∈ Σ

Then, for any ω ∈ Ω, the mapping t 7→ Gt(ω) = µω([0, t]). This shows that each sample
path is a function a : t 7→ µω([0, t]) for the measure µω, so every sample path is a finite
variation function by definition.

Lemma 3.3. The truncated return process (Jt)t≥0 as defined in Theorem 3.2 is a Feller-Dynkin
process.

Proof. Consider the filtered probability space P = (Ω,F , (Ft)t≥0 ,Pr) defined previously.
Proposition 1 shows that (Jt)t≥0 is a Markov process. It remains to show that it is a Feller-
Dynkin process. First, we must show that its transition semigroup maps (Pt)t≥0 are endo-
morphisms on C0(X ×R). Let ψ ∈ C0(X ×R).

Note that since (Xt)t≥0 has continuous sample paths,
(
Gt

)
t≥0

has absolutely continuous
sample paths since

Gt(ω) =

∫ t

0

γsr(Xs(ω))ds ω ∈ Ω

so it is bounded by the integral of a bounded function. Therefore Pδψ can be expressed as

Pδψ =

∫
ψ ◦ (Xt+δ, Gt+δ)dPr

Since the sample paths Xt+δ, Gt+δ are continuous, the integrand above is a continuous
function. Additionally, since ψ,X ,R are all compactly supported, we see that Pδψ is as
well. Therefore Pδψ ∈ C0(X ×R).

It is easy to check that P0ψ = id. This follows simply from the fact that (Xt)t≥0 is a
Feller-Dynkin process (so its semigroup has an identity) and

(
Gt

)
t≥0

is deterministic given
(Xt)t≥0. For the same reason, it follows that PtPs = Pt+s.

It remains to show that ‖Pδψ − P0ψ‖ δ↓0−→ 0. We have
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‖Pδψ − P0ψ‖ = ‖Pδψ − ψ‖

=

∥∥∥∥∫ (ψ ◦ (Xt+δ, Gt+δ)− ψ(Xt, Gt)
)
dPr

∥∥∥∥
=

∥∥∥∥∫ ψ ◦ (Xt+δ, Gt+δ)dPr−ψ(Xt, Gt)

∥∥∥∥

Since ψ is supported on a compact finite-dimensional set and it is continuous, it follows
that it is bounded. Therefore, it follows by the dominated convergence theorem that

lim
δ→0

∫
ψ ◦ (Xt+δ, Gt+δ)dPr =

∫
ψ ◦ lim

δ→0
(Xt+δ, Gt+δ)dPr

=

∫
ψ(Xt, Gt)dPr

= ψ(Xt, Gt)

This proves the claim.

Corollary 3.1. The truncated return process (Jt)t≥0 defined in Theorem 3.2 has an infinitesimal
generator L : C0(X ×R)→ C0(X ×R) given by

L ψ(x, g) = (LXψ(·, g))(x) + r(x)
∂

∂g
ψ(x, g) (3.7)

where LX is the infinitesimal generator of the process (ι1Jt)t≥0 = (Xt)t≥0.

Proof. Since Lemma 3.3 shows that (Jt)t≥0 is a Feller-Dynkin process, the existence of an
infinitesimal generator driving this process is guaranteed. Let ψ ∈ C2

0(X ×R). Then

Pδψ(j)− ψ(j)

δ
=

1

δ

(
E [ψ(Jt+δ) | Jt = j]− ψ(j)

)
= E

[
1

δ
(ψ(Jt+δ)− ψ(Jt))

∣∣∣∣ Jt = j

]
(∗)
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We will proceed by applying Itô’s Lemma to this expectation. However, we must first
verify that (Jt)t≥0 satisfies the hypotheses of Itô’s Lemma, namely, it must be a semi-
martingale. It is easy to verify that this is the case. We can express (Jt)t≥0 as

Jt =

Mt︷ ︸︸ ︷
(Xt − E [Xt] , 0)>+

At︷ ︸︸ ︷
(E [Xt] , Gt)

>

It follows immediately from Lemma 3.2 that (At)t≥0 is a finite variation process. Fur-
thermore, since (Xt)t≥0 is a Feller-Dynkin process, we know from Lemma 3.1 that (Xt −
E [Xt])t≥0 is a martingale. Thus, (Jt)t≥0 can be expressed as a sum of a local martingale5

and a finite variation process, making it a semimartingale by definition.

Since (Jt)t≥0 is a semimartingale and ψ ∈ C2
0(X×R), we may apply Itô’s lemma to expand

(∗) as follows,

Pδψ(j)− ψ(j)

δ
=

1

δ
E

[∫ t+δ

t

d+1∑
i=1

∂ψ(Js)

∂ji
dJ is +

1

2

∫ t+δ

t

d+1∑
i=1

d+1∑
k=1

∂2ψ(Js)

∂ji∂jk
d[J i, Jk]s

∣∣∣∣∣ Jt = j

]

=

a︷ ︸︸ ︷
1

δ
E

[∫ t+δ

t

d∑
i=1

∂ψ(Js)

∂ji
dJ is +

1

2

∫ t+δ

t

d∑
i=1

d∑
k=1

∂2ψ(Js)

∂ji∂jk
d[J i, Jk]s

∣∣∣∣∣ Jt = j

]

+

b︷ ︸︸ ︷
1

δ
E

[∫ t+δ

t

∂ψ(Js)

∂jd+1
dJd+1

s +
1

2

∂2ψ(Js)

∂(jd+1)2
d[Jd+1, Jd+1]s

∣∣∣∣ Jt = j

]

+

c︷ ︸︸ ︷
1

2δ
E

[∫ t+δ

t

d∑
i=1

∂2ψ(Js)

∂ji∂jd+1
d[J i, Jd+1]s

∣∣∣∣∣ Jt = j

]

Recall that J1:d
t = ι1Jt = Xt, and Jd+1

t = ι2Jt = Gt. In the limit as δ ↓ 0, the term a

above therefore is simply the generator of the process (Xt)t≥0 applied to ψ. Moreover,
since it was shown that

(
Gt

)
t≥0

is a finite variation process in Lemma 3.2, it follows that
[J i, Jd+1] ≡ 0 for any i ∈ [d+ 1] [Le Gall, 2016]. Consequently, we have c ≡ 0. Simplifying,

5By the definition of a local martingale, given in Appendix C.1.2, it is clear that all martingales are local
martingales.
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lim
δ→0

Pδψ(j)− ψ(j)

δ
= LXψ(j) + lim

δ→0

1

δ
E

[∫ t+δ

t

∂ψ(Js)

∂g
dGs

∣∣∣∣ Jt = j

]
+
∂ψ(j)

∂t

= LXψ(j) +
∂ψ(j)

∂g
r(Xt)

This completes the proof.

Now we’re ready to prove the main result of this section.

Proof of Theorem 3.2. We want to study the probability measure ηπ(· | x), where x can be
an arbitrary state in X . Recall that the truncated return process is defined such that

Gπ
x
L
=GT

∣∣∣ X0 = x

It’s important to note the condition that X0 = x. In particular

Gπ
xt

L
6= GT

Rather, we have, for t ≤ T

GT
L
=

∫ T

0

γsr(Xs)ds

L
=

∫ t

0

γsr(Xs)ds+

∫ T

t

γsr(Xs)ds

L
=Gt + γt

∫ T−t

0

γsr(Xs+t)ds

Therefore, the time-adjusted random return is expressed by
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GT −Gt

γt
L
=Gπ

xt

∣∣∣∣ X0 = xt, G0 = 0

We’ll express the return measure function as the density of the time-adjusted random
return. For any Borel set A ⊂ R, we have

ηπ(A | j) = E
[
φz(GT )

∣∣ Jt = j
]

φz = χγ−t(A−Gt)

γ−t(A−Gt) = {γ−t(z −Gt) : z ∈ A}

Note that Fηπ is a solution to the Kolmogorov backward equation for (Jt)t≥0. However,
we want to express ηπ as the solution to an equation governed by the process γ−t(Zt(z))t≥0

whereZt(z) = γ−t(z−Gt) for any return z. By applying the Feynman-Kac formula (shown
in Theorem C.2) to the generator derived in Lemma 3.3, the generator L ? corresponding
to the process (Xt, Zt(z)) is given by

L ? = L − log γι2

where L ψ(x, z) = L ψ(x,−z) since dz
dg

= −1.

Finally, since ηπ(· | x) is supposed to be a stationary distribution, the Kolmogorov back-
ward equation for the generator L ? becomes

0 =
∂

∂t
Fηπ(x, z) = −L ?

ZFηπ(x, z)

= LXFηπ(x, z)− (r(x) + z log γ)
∂

∂z
Fηπ(x, z),

as claimed. Since ηπ(· | x) is assumed to be absolutely continuous, the existence of ∂Fηπ

∂z
is

guaranteed.
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The process (Xt, Zt(z))t≥0 used in this proof will be referred to henceforth as the conditional
backward return process. Following is its formal definition.

Definition 12 (Conditional Backward Return Process). Let (Jt)t≥0 = (Xt, Gt)t≥0 denote the
truncated return process with a discount factor γ induced by an agent following a fixed
policy to produce the Markov process (Xt)t≥0 ⊂ X . The conditional backward return process
conditioned on the return taking value z ∈ R is the process (Υ(z)t)t≥0 : R+ → X × R
given by

Υ(z)t = (Xt, γ
−t(z −Gt))

5

Unlike the truncated return process which accumulates rewards “forward in time”, the
conditional backward return process conditions on a given return z and describes the
return left to be obtained in order to attain a return of z.

Corollary 3.2 (The Distributional HJB Equation for Itô Diffusions). Under the assumptions
of Theorem 3.2 as well as Assumption 3.4, the stationary return distribution function ηπ satisfies
the following equation,

0 = 〈∇xFηπ(x, z), fπ(x)〉+ Tr
(
σσσπ(x)>HxFηπ(x, z)σσσπ(x)

)
− (r(x) + z log γ)

∂

∂z
Fηπ(x, z) (3.8)

Proof. This result follows directly from Theorem 3.2, since the infinitesimal generator LX

of an Itô Diffusion (Xt)t≥0 governed by

dXt = fπ(Xt)dt+ σσσπ(Xt)dBt

is known [Rogers and Williams, 1994, Villani, 2008, Jordan et al., 2002] to be

LXφ = 〈∇φ, fπ〉+ Tr
(
σσσ>πHφσσσπ

)
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Remark 3.2. Readers that are familiar with optimal control theory may notice a similarity
between (3.8) and the HJB equation [Fleming and Soner, 2006]. In fact, it can be seen that
in the case of deterministic dynamics, (3.8) is equivalent to the deterministic HJB equation
in the policy evaluation setting, in a weak sense. When the dynamics are deterministic,
we have σσσπ ≡ 0, and the return distribution function is given by %π(· | x) = ∂

∂z
Fηπ(x, z) =

δV π(x), where V π(x) =
∫ T

0
γsr(Xs)ds is the value function. When z = V π(x), (3.6) reduces

to

0 = −〈∇xV
π(x), fπ(x)〉 − r(x)− log γV π(x)

= 〈∇xV
π(x), fπ(x)〉+ r(x) + log γV π(x)

which is precisely the HJB equation with an infinite time horizon [Munos, 2004, Theorem
1] in the policy evaluation setting.

For z 6= V π(x), we are left with 〈∇xV
π(x), fπ(x)〉 = 0, which simply states that the agent

is moving orthogonally to the direction of steepest ascent of the value function.



4
Approximate Distributional Dynamic

Programming

In order to construct and analyze distributional reinforcement learning in continuous
time, we may compute the return distribution function by solving (3.6) at each state.
Many algorithms exist for solving PDEs, many examples can be readily found within
the stochastic optimal control literature [Fleming and Soner, 2006]. An additional chal-
lenge in the distributional RL setting is that solutions to (3.6) belong to a constrained
set – that being the set of probability measures over R. The algorithm of Benamou and
Brenier [Benamou and Brenier, 2000] addresses such constraints, however this algorithm
works only for fixed, finite time intervals, and scales poorly with the episode length. In
this chapter, we will construct a tractable method for approximating solutions to (3.6) via
gradient-based iterative refinements, inspired by the results discussed in §2.5.

As in the case of discrete-time distributional reinforcement learning, it is impossible to
learn a return distribution function exactly since the space of probability measures over
R is infinite-dimensional. The continuous time dynamics introduces the additional chal-
lenge of time discretization. In order to proceed, we will have to resort to approximately
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computing the return distribution function, and this chapter will discuss how this can be
accomplished.

The remainder of this chapter will be structured as follows:

• We will begin by illustrating a framework for representing probability measures
in §4.1, and we will discuss how the choice of representation affects the character-
ization of return distribution evolution in continuous time;

• A continuous-time formulation of distributional policy evaluation is analyzed in
§4.2;

• A brief discussion of the distributional optimal control problem in §4.3 concludes
the chapter.

4.1 Representation of Probability Measures

In order to represent probability measures in a tractable manner, we follow the framework
suggested by Rowland et al. [2019] and explicitly distinguish between the statistics of a
random variable and its distribution. In doing so, we restrict the class of probability
measures that can be modeled to a class of probability measures that can be imputed from
a finite set of statistical functionals.

Definition 13 (Statistical Functional). Let Ω denote a measurable space. A statistical func-
tional is a function s : Pp (Ω) → R. The values taken by statistical functionals are called
statistics. 5

Definition 14 (Imputation Strategy, Rowland et al. [2019]). Let Ω be a measurable space
and N ∈ N. An imputation strategy is a function Φ : SΦ → Pp (Ω) such that for any set of
statistical functionals s = {sn}Nn=1,

s ◦ Φ = id

where SΦ ⊂ RN is the set of admissible statistics corresponding to the imputation strategy
Φ. For example, the imputation strategy Ψ : (s1, s2) 7→ N (s1, s2) has the domain SΨ =

R × (0,∞), since the second parameter of Ψ corresponds to the variance of a normal
distribution, which must be positive.
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Simply put, an imputation strategy maps a set of statistics to a probability measure with
those statistics. 5

Imputation strategies have a very simple definition in the language of categories which
provides a nice pictorial description.

Proposition 3 (A categorical perspective on Imputation Strategies). Let SF and Pr denote
the category of sets of statistical functionals and the category of sets of probability measures re-
spectively, where both are understood as subcategories of Set. An imputation strategy is a functor
Φ : SF → Pr. That is, Φ is a function for which diagrams of the form shown in Figure 4.1
commute1.

Pr

Φs1 Φs2

SF

s1 s2

Φ ◦ f

f

Figure 4.1: Imputation strategy as a functor

There is a number of natural choices for combinations of imputation strategies and statis-
tical functionals, and any particular choice may have considerable theoretical or compu-
tational implications. A few of them are described below.

The mean A very simple choice for the set statistical functionals is the singleton contain-
ing the mean functional, s = {η 7→ EZ∼η [Z]}. In fact, distributional RL with this
representation is equivalent to standard RL.

A set of moments A natural extension from the representation of solely the mean is a rep-
resentation consisting of a finite number of moments, s(η) = {EZ∼η [Zni ] : i ∈ [N ]}
where {ni}Ni=1 ⊂ N. Imputation strategies for this representation are non-trivial.

A set of atoms A familiar finite-dimensional parameterization of a probability measure
over an arbitrary measurable space (Ω,F) with a σ-finite measure µ has the form

1A diagram commutes if for any two nodes (objects) in the diagram, the composition of arrows on any
path between those nodes is the same.



4.1. REPRESENTATION OF PROBABILITY MEASURES

η̂(·) =
N∑
i=1

αiχpi (4.1)

where {αi}Ni=1 ⊂ R+,
∑

i αi = 1, {pi}Ni=1 ⊂ F is a partition2 of Ω, and µ(pi) = µ(p1) for
each i ∈ [N ]. For probability measures over bounded subsets of R, this is equivalent
to splitting the subset into intervals of equal length and modeling the probabily
masses of a random variable taking a value in each interval. Mathematically, the
corresponding statistical functionals are

si(η̂) = EZ∼η̂ [χpi ]

and the imputation strategy is Φ(s) =
∑

i siχpi . An issue with this scheme is that
until the return distribution function estimate has converged, operator applications
(such as distributional Bellman operators) will yield distributions that are supported
on a different set of atoms, which makes these distributions difficult to interpret
with respect to the set of statistical functionals. Nonetheless, this approach was
taken in the first approach to distributional RL, namely Categorical Distributional RL
[Bellemare et al., 2017a] and the C51 algorithm, which solves the discrepancy of
support problem by introducing a projection operator that maps categorical distri-
butions to an appropriate set of statistics.

Quantiles A very simple imputation strategy can be leveraged if we model the statistical
functionals corresponding to evenly spaced quantiles of a random variable. Let Z ∈
A ⊂ R be a random variable with Law(Z) = η̂, where A is a compact set. The
τ -quantile qη̂(τi) of η̂ is defined as

qη̂(τ) = inf {z ∈ A : η̂(Z ≤ z) = τ}

It is also known from Koenker and Bassett Jr [1978], Dabney et al. [2018a] that quan-
tiles can also be expressed via an optimization of the form

2A partition of a set A is a collection {Ai}Ni=1 such that i 6= j =⇒ Ai ∩Aj = ∅ and
⋃
iAi = A.
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qη̂(τ) = arg min
z∈A

E
Z∼η̂

[(
τ1[Z>z] + (1− τ)1[Z≤z]

)
|Z − z|

]
We can choose our statistical functionals {si}Ni=1 such that si(η̂) = qη̂(τ̂i), where τi =

(i − 1)/N for i ∈ [N + 1], and τ̂i = (τi+1 + τi)/2 for i ∈ [N ]. Dabney et al. [2018a]
shows that this choice of statistical functionals minimizes the 1-Wasserstein distance
between a distribution and its approximation with a finite number of uniformly-
weighted point masses.

−4 −2 0 2 4
0

0.1

0.2

0.3

Z

η̂
(Z

)

Mean: s = {EZ∼η̂[Z]}

−4 −2 0 2 4
0

0.1

0.2

0.3

Z

Quantile: s = {qη̂(τ̂i)}Ni=1

−4 −2 0 2 4
0

0.1

0.2

0.3

Z

Categorical: s = {EZ∼η̂[χpi ]}Ni=1

Figure 4.2: Examples of imputed probability measures

Perhaps the most immediate question is whether or not the statistical functionals can
be learned exactly (that is, they converge to the statistics of the target distribution) by
successive Bellman-like dynamic programming updates. This property is formalized by
the following definition.

Definition 15 (Bellman-Closedness, Rowland et al. [2019]). A set of statistical functionals
is said to be Bellman-closed if for any MDP and state x in the MDP the statistics s(η(· | x))

can be expressed exactly in terms of the discount factor γ, s(η(· | X1)) | X0 = x, and
R0 =

∫ 1

0
γsr(Xs)ds. 5

Notably, there are remarkably few Bellman-closed sets of statistical functionals.

Theorem 4.1 (Rowland et al. [2019]). Among all finite sets of statistical functionals s = {si}Ni=1

having the form s(η) = EZ∼η [h(Z)] for some measurable function h, s is Bellman closed only if
it has the same span as that of the first N moment functionals.

This tells us that neither the quantile nor the categorical representations are Bellman-
closed. While this is unfortunate, distributional RL algorithms using these represen-
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tations tend to approximate the true return distributions quite well empirically [Hessel
et al., 2018, Bellemare et al., 2020]. It turns out that these representations are approximately
Bellman-closed, and Rowland et al. [2019] provides statistical rates based on the number
of statistical functionals used in the representation and the discount factor.

4.1.1 Implications of the Representation in Continuous-Time

At first glance, the method we choose to represent return distributions may seem com-
pletely independent of the continuous-time problem. However, this is not the case, and
we will see that under some representations the problem becomes much more complex.

Consider once again the distributional HJB equation (3.6). Fix a set of statistical function-
als s = {si}Ni=1 and suppose now that η(· | x) = Φ(ζ(x)) where Φ is an imputation strategy
and ζ(x) : x 7→ s(η(· | x)). The learning problem reduces to learning ζ.

Searching over a space of admissible statistics can be a lot more convenient than searching
over a space of probability measures. Indeed, many spaces of admissible statistics are
Euclidean, which is far from the case for spaces of probability measures. Because of this,
operations in the space of admissible statistics tend to be much more intuitive. As such, a
characterisation of return distribution functions in terms of statistical functionals will be
very useful for designing algorithms. Theorem 4.2 demonstrates such a characterization.

In Theorem 4.2, we make use of vectorized equations, which consist of notation that
is common in multivariable calculus and linear algebra. In particular, recall that the
Jacobian J~v of a vector-valued function ~v : Rm → Rn is a matrix in Rn×m such that
[J~v(x)]ij = ∂~vi

∂xj
(x), and the Hessian Hf of a function f : Rm → R is a matrix in Rm×m

where [Hf(x)]ij = ∂2f(x)
∂xi∂xj

. Moreover, in order to derive a robust characterization of the re-
turn distribution, we will require a mild regularity condition on the imputation strategy.

Definition 16 (Statistical Smoothness). An imputation strategy Φ : SΦ → Pp (R) is called
statistically smooth if Φ(s) is a tempered distribution (see Appendix D) for each s ∈ SΦ.
Likewise, a return distribution function η is said to be statistically smooth if Fηπη(x, ·) is
a tempered distribution for each x ∈ X and Fηπη(·, z) is twice continuously differentiable
almost everywhere for each z ∈ R. 5

Additionally, we will introduce the following terms for the purpose of improving legibil-
ity and garnering intuition.

Definition 17 (Spatial Diffusivity). Let Φ : SΦ → Pp (R) be a statistically smooth imputa-
tion strategy and (Xt)t≥0 ⊂ X ⊂ Rd an Itô diffusion given by
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dXt = fπ(Xt)dt+ σσσπ(Xt)dBt

The spatial diffusivity of the random return under the imputation strategy Φ is defined as
the mapping Kx

ηπ : X ×R → Rd×d given by

Kx
ηπ(x, z) =

N∑
i=1

∇iΦ(ζ(x))(z)Hζ i(x)

5

More intuitively, the spatial diffusivity is a term defined by the stochasticity of the return
due to the stochasticity of the state process. We will also identify a similar term due
to the stochasticity of the return due to the variability of the statistics as a result of the
stochasticity in the state process.

Definition 18 (Statistical Diffusivity). Let Φ : SΦ → Pp (R) be a statistically smooth im-
putation strategy and (Xt)t≥0 ⊂ X ⊂ Rd an Itô diffusion like that of Definition 17. The
statistical diffusivity of the random return under the imputation strategy Φ is defined as
the mapping Ks

ηπ : X ×R → Rd×d given by

Ks
ηπ(x, z) = ζx(x)>

(
∂2

∂z2
Φ(ζ(x))(z)

)
ζx(x)

5

We can now analyze the return distribution functions characterized by (3.6) with respect
to imputation strategies and statistical functionals.

Theorem 4.2 (The Statistical HJB Loss for Policy Evaluation). Let the assumptions of Corol-
lary 3.2 hold. In particular, recall that the state dynamics of the agent following policy π are given
by

dXt = fπ(Xt)dt+ σσσπ(Xt)dBt Xt ∈ X ⊂ Rd

For any statistically smooth imputation strategy Φ : SΦ → Pp (R) on a space of admissible
statistics SΦ ⊂ RN and a corresponding set of statistical functionals s : Pp (R)→ SΦ as defined
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above such that s ◦ Φ = id, we define the following terms,

ζ(x) = s(ηπ(· | x)) X → SΦ (4.2)

ζx(x) = Jxζ(x) X → RN×d (4.3)

We define the Statistical HJB Loss by the following equation,

LS(ζ(x),Φ) = ∇ζFΦ(ζ)(x, z)
>ζx(x)fπ(x)− (r(x) + log γz)⊗ ∂

∂z
FΦ(ζ)(x, z)

+
1

2
σσσπ(x)>

(
Kx
ηπ(x, z) + Ks

ηπ(x, z)
)
σσσπ(x)

(4.4)

where Kx
ηπ ,K

s
ηπ are the spatial diffusivity and the statistical diffusivity respectively.

Then if Fη satisfies (3.6) and Fη(x) = Φ(ζ(x)), it is necessary that LS(ζ(x),Φ) = 0.

Proof. This is simply proved by applications of the chain rule to (3.6).

Theorem 4.2 presents a condition for the return distribution function that is formulated as
a loss, as opposed to a PDE, since generally the probability measures that we impute from
a finite collection of statistics do not form a rich enough class to satisfy the distributional
HJB equation exactly. Thus, we cannot expect to characterize these probability measures
like we did in Theorem 3.2. Equation (4.4) can reasonably be interpreted as a loss function
for distributional policy evaluation, since it is minimized when the statistics are sufficient
to encode the return distribution function accurately.

It looks like we have taken a step backward here, as (4.4) appears substantially more
complex than (3.6). However, it turns out that a weaker form of (4.4) exists that is greatly
simplified when the imputation strategy has a particular structure.

Corollary 4.1. In the context of Theorem 4.2, if Φ has the form

Φ(ζ(x)) =
1

N

N∑
i=1

δζi(x), (4.5)

then at each state x ∈ X , the following system is satisfied by the statistics {ζ i(x)}Ni=1:
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
0 = 〈∇iζ(x), fπ(x)〉+ r(x) + ζ i(x) log γ + 1

2
Tr
(
σσσπ(x)>Hxζ

i(x)σσσπ(x)
)

si(η(· | x)) = ζ i(x)

i = 1, . . . , N

(4.6)

in the distributional sense (see Appendix D, definition 48).

Proof. Let φ : X × R → R be an arbitrary test function in the Schwartz class S , and let
η = Φ(ζ(x)) such that Fη is a distributional solution to (3.8). Denote by ϑ : R → [0, 1] the
Heaviside step function ϑ(z) = 1[z>0]. Then, we have that

0 =

∫
X×R

[
φ(x, z)

〈
∇x

N∑
k=1

ϑ(z − ιkζ(x)), fπ(x)

〉
− φ(x, z)(r(x) + z log γ)

∂

∂z

N∑
k=1

ϑ(z − ιkζ(x))

+
1

2
φ(x, z)Tr

(
σσσπ(x)>

(
Hx

N∑
k=1

ϑ(z − ιkζ(x))

)
σσσπ(x)

)]
dzdx

=

∫
X×R

[〈
φ(x, z)∇x

N∑
k=1

ϑ(z − ιkζ(x)), fπ(x)

〉
− φ(x, z)(r(x) + z log γ)

∂

∂z

N∑
k=1

ϑ(z − ιkζ(x))

+
1

2
Tr

(
σσσπ(x)>φ(x, z)

(
Hx

N∑
k=1

ϑ(z − ιkζ(x))

)
σσσπ(x)

)]
dzdx

Taking distributional derivatives once, the Heaviside step functions are transformed into
Dirac distributions, yielding

0 =

∫
X×R

[〈
−φ(x, z)

N∑
k=1

διkζ(x)(z)∇xιkζ(x), fπ(x)

〉
− φ(x, z)(r(x) + z log γ)

N∑
k=1

διkζ(x)(z)

− 1

2
Tr

(
σσσπ(x)>φ(x, z)

(
∇x

N∑
k=1

διkζ(x)(z)

)
∇xιkζ(x)σσσπ(x)

)]
dzdx
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Next, we carry out the second spatial derivative.

0 =

∫
X×R

[〈
−φ(x, z)

N∑
k=1

διkζ(x)(z)∇xιkζ(x), fπ(x)

〉
− φ(x, z)(r(x) + z log γ)

N∑
k=1

διkζ(x)(z)

− 1

2
Tr

(
σσσπ(x)>φ(x, z)

(
∇x

N∑
k=1

διkζ(x)(z)∇xιkζ(x)

)
σσσπ(x)

)]
dzdx

=

∫
X×R

[〈
−φ(x, z)

N∑
k=1

διkζ(x)(z)∇xιkζ(x), fπ(x)

〉
− φ(x, z)(r(x) + z log γ)

N∑
k=1

διkζ(x)(z)

− 1

2
Tr

(
σσσπ(x)>φ(x, z)

N∑
k=1

[
∇xδιkζ(x)(z)∇xιkζ(x) + διkζ(x)(z)Hxιkζ(x)

]
σσσπ(x)

)]
dzdx

=

∫
X×R

φ(x, z)

[〈 N∑
k=1

διkζ(x)(z)∇xιkζ(x), fπ(x)

〉
+ (r(x) + z log γ)

N∑
k=1

διkζ(x)(z)

+
1

2
Tr

(
σσσπ(x)>

N∑
k=1

διkζ(x)(z)Hxιkζ(x)σσσπ(x)

)]
dzdx

+
1

2

(a)︷ ︸︸ ︷∫
X×R

Tr
(
σσσπ(x)>φ(x, z)∇xδιkζ(x)(z)∇xζ(x)σσσπ(x)

)
dzdx

We isolate the term (a) as it involves the (distributional) derivative of the Dirac distribu-
tion, which is a strange object. However, since our equation holds for any test function φ,
we will show that, with the right choice of test function, (a) = 0.

Choose any x ∈ X and let ε > 0. Then let φ(x, z) = %ε(x)ψ(z) where %ε : X → R and
ψ : R → R are members of the Schwartz class S . We define %ε(x) as follows,

%ε(x) =
1

ε
√
π

exp

(
−‖x− x‖

2

ε2

)

It is well known that %ε is a Schwartz function [Lax and Sons, 2002]. Moreover, since
∇x%ε(x) = 0 and %ε is smooth, we can find a neighborhoodB of x so small that supx1,x2∈B ‖x1 − x2‖ ≤
ε. We are left with



4.1. REPRESENTATION OF PROBABILITY MEASURES

(a) = lim
ε→0

[ ∫
B

∫
R
Tr
(
σσσπ(x)>φ(x, z)∇xδιkζ(x)(z)∇xιkζ(x)σσσπ(x)

)
dzdx

+

∫
X\B

∫
R
Tr
(
σσσπ(x)>φ(x, z)∇xδιkζ(x)(z)∇xιkζ(x)σσσπ(x)

)
dzdx

]

= lim
ε→0

[
−

Mε︷ ︸︸ ︷∫
B

∫
R
Tr
(
σσσπ(x)>ψ(z)∇x%ε(x)διkζ(x)(z)∇xιkζ(x)σσσπ(x)

)
dzdx

−

Eε︷ ︸︸ ︷∫
X\B

∫
R
Tr
(
σσσπ(x)>ψ(z)∇x%ε(x)διkζ(x)(z)∇xιkζ(x)σσσπ(x)

)
dzdx

]

It is also well-known limε→0 %ε = δx [Lax and Sons, 2002]. Since necessarily x 6∈ X \B, the
term Eε vanishes. Given that supx1,x2∈B ‖x1 − x2‖ ≤ ε, we have

|Mε| ≤ ε sup
x∈B

∣∣∣∣∫
R
Tr
(
σσσπ(x)>ψ(z)διkζ(x)(z)∇xιkζ(x)σσσπ(x)

)
dz

∣∣∣∣
= ε sup

x∈B

∣∣Tr (σσσπ(x)>ψ(ιkζ(x))∇xιkζ(x)σσσπ(x)
)
dz
∣∣

By the assumption that ζ(x) is almost-everywhere differentiable, the supremum above is
bounded for almost every x, and it follows that |Mε| → 0 almost surely.

We are left with the following equation:

0 = lim
ε→0

∫
X

∫
R
%ε(x)ψ(z)

N∑
k=1

διkζ(x)(z)

[
〈∇xιkζ(x), fπ(x)〉+ r(x) + z log γ +

1

2
Tr
(
σσσπ(x)>Hxιkζ(x)σσσπ(x)

)]
dzdx

Given that Φ(ζ(x)) is statistically smooth, it is a tempered distribution, so this limit exists.
We mentioned previously that %ε → δx, so we have

0 =

∫
R
ψ(z)

N∑
k=1

διkζ(x)(z)

[
〈∇xιkζ(x), fπ(x)〉+ r(x) + z log γ +

1

2
Tr
(
σσσπ(x)>Hxιkζ(x)σσσπ(x)

) ]
dz
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It follows by definition that Φ(ζ(x)) is a distributional solution to

0 =
N∑
k=1

διkζ(x)(z)

[
〈∇xιkζ(x), fπ(x)〉+ r(x) + z log γ +

1

2
Tr
(
σσσπ(x)>Hxιkζ(x)σσσπ(x)

) ]

Note that the equation above is a sum of weighted Diracs. Thus, the only way for it to
be satisfied is if each of the terms in the sum individually vanishes. So, we have shown
that for each k ∈ [N ] and almost every x ∈ X , the statistics function ιkζ is a distributional
solution of

0 = 〈∇xιkζ(x), fπ(x)〉+ r(x) + ιkζ(x) log γ +
1

2
Tr
(
σσσπ(x)>Hxιkζ(x)σσσπ(x)

)
This completes the proof.

Remark 4.1. A similar statement to Corollary 4.1 cannot be made for arbitrary representa-
tions, even if they’re finite-dimensional (such as a categorical distribution). The simplicity
of (4.6) is a consequence of the statistical diffusivity of the return vanishing under the rep-
resentation (4.5). Additionally, this representation admits a simplified form of the spatial
diffusivity of the return.

4.2 Policy Evaluation

In this section, we will look at how policy evaluation can be achieved via the analysis of an
optimization problem in the space of probability measures. As foreshadowed in §2.5, we
will proceed by studying continuous-time distributional policy evaluation as a gradient
flow in the space of probability measures. While discrete-time iterative RL algorithms
estimate the return distribution function with a sequence of iterates {ηk}∞k=1 where ηk+1 =

T π ηk, our continuous-time formulation of policy evaluation will take the form of a curve
(ητ )τ≥0 in the space of probability measures satisfying the continuity equation akin to
(CE),

∂

∂τ
%τ (· | x) +∇ · (%τ (· | x)v(x)) = 0 ∀x ∈ X
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Here %τ (· | x) corresponds to the density function of ητ (· | x), and v is a vector field
that can be interpreted as an update rule for a collection of “particles” whose density is
%τ (· | x) [Santambrogio, 2015]. It is well-known that solutions to continuity equations are
measure-preserving [Ullrich, 2011], which ensures that each point on the curve (ητ )τ≥0 is
a proper probability measure.

We will consider once again the truncated return process (Jt)t≥0 = (Xt, Gt)t≥0 and let
ηπ(A | x) = Pr(GT ∈ A | X0 = x) be the return measure function, where T is the stopping
time defined in Proposition 2. As usual, we assume that ηπ(· | x) is absolutely continuous
with respect to the Lebesgue measure for each state x ∈ X .

Our goal ultimately is to construct a process (ητ )τ≥0 such that ητ → ηπ in a “reasonable”
topology. This process should be understood as an analogue to the sequence {(T π)kQ0}∞k=0

in discrete-time reinforcement learning. We are faced with the following challenges,

1. We must find a suitable topology in which convergence will hold in a meaningful
sense (for instance, the topology induced by the total variation distance will not
suffice, as explained in §2.4);

2. In order to produce a realizable algorithm for policy evaluation, we have to find a
discrete-time approximation

{
ηδk
}∞
k=1

of (ητ )τ≥0 that converges to (ητ )τ≥0 in the limit
of infinitesimal timesteps, where δ → 0.

Fortunately, following the results discussed in §2.5, we will simultaneously circumvent
both issues by exhibiting a process (ητ )τ≥0 that is a gradient flow of a functional in the 2-
Wasserstein space [Ambrosio et al., 2008]. In particular, as long as the functional is λ con-
vex in the sense of definition 2.33 for some λ > 0, we can be assured that ητ → ηπ in the
2-Wasserstein metric [Jordan et al., 2002, Santambrogio, 2015], and the generalized miniz-
ing movements of the JKO scheme will provide us with a convergent time-discretized
approximation of (ητ )τ≥0.

Let (T π
τ )τ≥0 denote the transition semigroup of the conditional backward return process

(Υ(z)t)t≥0. By definition, we have

T π
τ ι2(x, z) = E [ι2(Xτ , Zτ ) | X0 = x, Z0 = z]

Let ζ : x 7→ s(η(· | x)) ∈ RN be a set of statistical functionals such that there exists
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Φ : RN → Pp (R) such that s ◦ Φ = id and Φ(s) = 1
N

∑N
i=1 δsi . Then we can aim to learn

the return measure by ensuring that | ∂
∂τ
ητ | → 0. We can attempt this by considering the

gradient flow of the following functional,

F (µτ ) =

∫
R

∣∣∣∣ ∂∂τ Fµτ (x, z)
∣∣∣∣2 dµτ (z) (4.7)

Note that the loss functional F of (4.7) is minimized when ∂
∂τ
Fµτ (x, ·) = 0, which will

correspond to the return distribution function estimates converging to stationary points.
These stationary points may not necessarily be “optimal” in a meaningful sense, since
F may have local minima. Moving forward, we will demonstrate a trajectory (ητ )τ≥0

that does indeed have a unique fixed point. In order to accomplish this, we must impose
the characterization of return distribution functions developed in §3.2 and §4.1 on the
continuity equation.

Theorem 4.3. Let (µτ )τ≥0 , (ντ )τ≥0 : R+ →W2 be curves in the space of probability measures.
Suppose

∂

∂τ
Fµτ (x, z) = LXFµτ (x, z)− (r(x) + z log γ)

∂

∂z
Fµτ (x, z)

∂

∂τ
Fντ (x, z) = LXFντ (x, z)− (r(x) + z log γ)

∂

∂z
Fντ (x, z)

Then limτ→∞ dW2(µτ , ντ ) = 0, and the distance decays exponentially. Moreover, limτ→∞ µτ =

limτ→∞ ντ exists and the limit is unique.

This proof will proceed in a few steps:

1. We will show that F as defined in (4.9) is λ-convex for a λ > 0;

2. Then we can establish that (Fµτ )τ≥0 and (Fντ )τ≥0 are gradient flows, in an EVI sense,
to a loss functional that approximates F ;

3. Finally, using the properties of EVI gradient flows, we will deduce that the 2-Wasserstein
distance between µτ , ντ decays exponentially in time.

In order to prove 1, we will begin with the following lemma.

Lemma 4.1. The function L ?|W2 : W2 → R defined as
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L ?|W2 η = LXFη − (r ◦ ι1 + log γι2)
∂Fη
∂z

(4.8)

is convex.

Proof. To begin, note that

T π
δ η(z | x) = E

[
η(γ−δ(z −Gδ) | Xδ)

∣∣ X0 = x
]

=

∫
X

∫
R
η(γ−δ(z − g) | x′) Pr(x′, g | x)

=

∫
X

∫
R
f g,γδ ] η(· | x′)dPr(x′, g | x)

where f]µ = µ ◦ f−1 is the pushforward measure of µ through f , and f g,γδ is a continuous
time extension of the function f r,γ introduced in Rowland et al. [2019] defined as

f g,γδ (z) = g + γδz

Then it follows that

T π
δ η(z | x)− η(z | x)

δ
=

1

δ

∫
X

∫
R

(
f g,γδ ] η(· | x′)− η(· | x)

)
dPr(x′, g | x)

On the right side of the equation above, we see that for any δ > 0 the mapping

Bδ : η(z | x) 7→ 1

δ
(T π

δ η(z | x)− η(z | x))

is convex. We also know that this mapping converges to L ?|W2 in measure from Theorem
3.2. Thus, for any δ > 0, λ ∈ [0, 1], and return measure functions η1, η2,
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Bδ(λ η1(· | x) + (1− λ) η2(· | x)) ≤ λBδ(η1(· | x)) + (1− λ)Bδ η2(· | x)

∴ lim
δ→0

Bδ(λ η1(· | x) + (1− λ) η2(· | x)) ≤ lim
δ→0

λBδ(η1(· | x)) + lim
δ→0

(1− λ)Bδ η2(· | x)

∴ L ?|W2(λ η1(· | x) + (1− λ) η2(· | x)) ≤ λL ?|W2 η1(· | x) + (1− λ)L ?|W2 η2(· | x)

This shows that L ?|W2 is indeed convex.

The purpose of Lemma 4.1 is to facilitate the proof that F is a convex functional, which
will be shown in the sequel.

Proof of Theorem 4.3. Consider the functional Fβ : W2 → R+ defined as

Fβ(η) =

∫
R

1

2

 φ(z)︷ ︸︸ ︷
L ?|W2 η(z | x)

2

η(dz | x) +
1

β

H(η(·|x))︷ ︸︸ ︷∫
R
− η(z | x) log η(z | x)dz (4.9)

This functional is known to correspond to an entropy-regularized optimal transport cost
[Cuturi, 2013], where the cost function on the underlying space (the space of returns) is
determined by φ. Additionally, (4.9) is known [Jordan et al., 2002] to be the formulation
of the Fokker-Planck equation (FP) expressed as an EVI gradient flow in W2 whenever φ2

is convex Santambrogio [2015].

By Lemma 4.1 we know that φ is convex and non-constant. Moreover, the square function
F : x 7→ x2 satisfies

x2 + y2 = (x− y)2 + 2xy

F (y) = −F (x) + (x− y)2 +∇F (x)y

= F (x) + (x− y)2 − 2x2 +∇F (x)y

= F (x) +
λ

2
(x− y)2 +∇F (x)(y − x) λ = 2

So the square function is λ-convex for λ = 2, and therefore there exists λ > 0 such that φ2

is λ-convex, completing step 1 of the proof.

Since the entropy functionalH(η(· | x)) is also famously convex, the loss functional Fβ is
λ-convex. Consequently, (4.9) satisfies the EVIλ condition (see §2.5.1), so it corresponds
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to an EVI gradient flow due to step 1. This completes the proof of step 2.

By the contraction property of EVI gradient flows shown in Theorem 2, we have

d

dτ
d2
W2

(µτ , ντ ) ≤ −4λd2
W2

(µτ , ντ )

Moreover, we see that d2
W2

(µτ , ντ ) ≤ exp(−4λd2
W2

(µ0, ν0)). Since λ > 0, we affirm that
dW2(µt, νt) → 0 at an exponential rate when ∂

∂t
µτ = −∇Fβ(µτ ) and ∂

∂t
ντ = −∇Fβ(ντ )

both in the EVI sense. The work of Cuturi [2013] shows that the curves (µτ )τ≥0 , (ντ )τ≥0

converge to gradient flows of F when β → ∞, so dW2(µτ , ντ ) → 0 exponentially when
Fµτ , Fντ satisfy the equations stated in the theorem (note that Fβ

β↑∞−→ F pointwise).

Finally, uniqueness of the gradient flow is confirmed by Grönwall’s Lemma [Gronwall,
1919]. Since Fβ is clearly minimized when φ ≡ 0, it follows that the gradient flow con-
verges to the return measure satisfying (3.6), which is ηπ.

To summarize, we have shown that the distributional HJB equation (3.6) can be solved
by formulating it as the gradient flow of the limit of functionals Fβ (4.9) as β → ∞.
Therefore, we can approximate solutions to the distributional HJB equation by solving
a Fokker-Planck equation (FP) with variance parameter tending to 0. The evolution of
(ητ )τ≥0 according to the EVI gradient flow is understood as the continuous-time ana-
logue to policy evaluation, and we showed that the stationary point of this curve is ηπ as
intended. However, we have not yet described a method of approximate policy evalua-
tion that is realizable on a computer, as this description of policy evaluation requires the
evolution of ητ to be a continuous-time curve – in other words, we must compute updates
to ητ continuously in time. In the following section, we will bootstrap the results from the
analysis of the JKO scheme (see §2.5.2) to derive a time-discretized approximation to pol-
icy evaluation that converges to (ητ )τ≥0 as the time discretization parameter shrinks to
zero.

4.2.1 Time Discretization

While Theorem 4.3 is promising, we are still assuming our return measure estimates can
evolve continuously in time – this of course cannot be the case for any imaginable algo-
rithm. It may be tempting to apply a gradient-descent-like algorithm to minimize Fβ ,
however this can be too crude – after all, the space of return measures is highly non-
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Euclidean, so updating a return measure with a Euclidean gradient step likely will not
result in another return measure.

Thankfully, W2 is a convex set, and therefore we can consider applying a proximal gradi-
ent optimization routine [Rockafellar, 2015]. In particular, such proximal gradient algo-
rithms have been studied specifically in W2 [Santambrogio, 2016, Salim et al., 2020], and
for the optimization of a generalization of Fβ [Jordan et al., 2002, Villani, 2008, Santam-
brogio, 2016, Chizat and Bach, 2018, Zhang et al., 2018, Martin et al., 2020].

The proximal gradient scheme that we are interested in, known as a generalized minimizing
movements scheme [De Giorgi, 1993], has the following form,

ηδk+1 ∈ arg min
η∈W2

[
Fβ(η) +

1

2δ
d2
W2

(η, ηδk)

]
(4.10)

where δ > 0 is the time discretization length and ηδk is the discrete-time approximation of
a return measure at time t = kδ for k ∈ N. Jordan et al. [2002] presents an interpolation of
this scheme that converges to the gradient flow as δ → 0. The proof relies heavily on the
geometry of W2 – in particular, it is crucial that W2 is a geodesic space [Villani, 2008, Am-
brosio et al., 2008]. This means that the 2-Wasserstein distance between any two points in
W2 is equal to the minimum among the lengths of all curves between these points3 mea-
sured with respect to the metric derivative. These minimizing curves are called geodesics,
and geodesics are known to have constant speed (up to time reparameterization) [San-
tambrogio, 2015]. To interpolate the curve

(
ηδτ
)
τ≥0

as suggested by Jordan et al. [2002], we
simply connect consecutive points ηδk, η

δ
k+1 by the constant speed geodesic between them,

resulting in

ηδkδ+s =

(
δ − s
δ

id+
s

δ
f g,γδ

)
]

ηδkδ =

(
id+s

f g,γδ − id

δ

)
]

ηδkδ (4.11)

for s ∈ (0, δ). This is illustrated in Figure 4.3.

Equation (4.11) can be interpreted by imagining η as a collection of particles moving along
constant speed (geodesic) paths, and the velocity of a particle z is δ−1(f g,γδ (z)−z). By The-
orem 4.3, the particle velocity converges so as to satisfy the distributional HJB equation
(3.6) as δ → 0.

As shown in Jordan et al. [2002], the time-discretized sequence
{
ηδk
}∞
k=1

defined by (4.11)

3It is imperative that this minimum exists, which is the case in W2 [Villani, 2008].
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η0

ητ

Figure 4.3: Trajectory of the return distribution in W2

The blue curve depicts the trajectory of the return distribution in W2. The piecewise linear curve (shown
in black) with vertices along the trajectory illustrates how we discretize and interpolate the trajectory in

time.

converges to the desired (ητ )τ≥0 as δ → 0. Thus, we can think of the operators T π
δ as

distributional Bellman operators that can be used to approximate continuous-time policy
evaluation iteratively. Note that this scheme will converge even as difference in time
between successive iterates of the return distribution function tends to 0 (for instance if
the parameter τ of (ητ )τ≥0 is equivalent to the flow of time in an episode rollout), so we can
use this scheme to approximately compute distributional Bellman updates continuously
in time.

4.3 Optimal Control

So far, we have only discussed how we can learn to evaluate a policy, but not how to
improve a policy to discover a good one. Unfortunately, even in discrete time, there is no
known distributional RL algorithm that converges to an optimal policy [Bellemare et al.,
2017a]. On the bright side, in discrete time, there exists a policy optimization scheme for
which the mean of the return distributions converges to the mean return.

Despite this gloomy result, existing distributional RL algorithms perform “greedy” tem-
poral difference learning in a manner similar to Q-Learning. For instance, let Π? denote
the set of optimal policies, defined according to,



4.4. SUMMARY

Π? =

{
π? ∈ Π : ∀x, V π?(x) ≥ sup

π
V π(x)

}

where π is the set of admissible policies and V π : X → R is the value function corre-
sponding to the policy π. The general approach to distributional optimal control involves
performing updates to minimize d(η, ηπ

?
) for estimates of π? ∈ Π?) in some metric4 d. It

isn’t entirely surprising that only the means of the return measures converge, since the
optimality condition is defined solely in terms of that statistic. However, there is no clear
general alternative for comparing probability measures.

The work of Dabney et al. [2018b] proposes an alternative ordering based on distortion risk
measures. In their IQN algorithm, return measures are represented as quantile functions,
and they are compared by the mean of the return measure convolved by a function that
effectively weighs its quantiles. The function can be tuned in such a way that optimal
policies are more risk-averse or risk-seeking, however there is still no guarantee of the
convergence to an optimal return distribution.

4.4 Summary

In this chapter, we discussed approximation schemes that can be used to perform tractable
approximate policy evaluation in a convergent manner. In particular, Corollary 4.1 demon-
strates a simple method of representing return measures in finite space, and equations
(4.10) and (4.11) describe a discrete-time scheme that converges to a particular gradient
flow. Theorem 4.3 shows that this gradient flow has a unique stationary point, which is
satisfied by the ground truth return measure function. We have yet to study a concrete
distributional RL algorithm, however. The following chapter presents a framework for
designing distributional RL algorithms based on the tools from this section.

4In practice, some algorithms use functions d that are not true metrics, like f -divergences for example.



5
DEICIDE:

A Framework for Distributional Reinforcement
Learning of Itô Diffusions

In the previous chapter, we derived an update rule for return measures in which all re-
turn measures undergoing the update converge to a unique fixed point, which satisfies
the distributional HJB equation (3.6). In this chapter, we transform this update rule to a
concrete algorithm and demonstrate its effectiveness against some benchmarks.

For the remainder of the thesis, we’ll consider a Feller-Dynkin process (X ,A, (Pt)t≥0 , r, γ)

for a finite (discrete) action space A with respect to the probability space (Ω,F ,Pr) de-
fined previously as well as the canonical filtration (Ft)t≥0. Moreover, we let assumptions
3.2, 3.3, and 3.4 hold. Notably, assumption 3.4 constrains the state process (Xt)t≥0 to the
class of Itô Diffusions; though by the Martingale Representation Theorem this turns out
to be quite robust. This chapter describes a framework for designing distributional RL al-
gorithms in this setting, called Distributional Evaluation of Implicitly-Controlled Itô Diffusion
Evolutions, or more compactly, DEICIDE.

Moving forward, we will derive tractable, convergent approximation algorithms for continuous-
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time distributional RL in §5.1. Given these algorithms, we demonstrate their results on
various benchmarks in §5.2.

5.1 Algorithms

This section will give a description of DEICIDE algorithms for which we provide numer-
ical experiments in the sequel.

We will proceed as follows:

• Based on the effects of spatial and statistical diffusivity due to imputation strate-
gies as discussed in §4.1, we will more concretely describe a tractable method of
representing return distributions in §5.1.1;

• In §5.1.2, we discuss how to compute unbiased gradient estimates in order to mini-
mize the loss functional (4.9) governing the policy evaluation gradient flow;

• We discuss strategies for exploration and optimal control in §5.1.3;

• Finally, based on the discussions of §5.1.1, §5.1.2, and §5.1.3, in §5.1.4 we present
pseudocode for two concrete continuous-time distributional RL algorithms.

5.1.1 Modeling the Return Measure Function

In order to approximate probability measures, we will employ statistical functionals and
imputation strategies as discussed in §4.1. More specifically, the gradient flow optimiza-
tion described by (4.10) is well-suited to “particle approximations” of probability mea-
sures – that is, measures of the form

η̂(z | x) =
1

N

N∑
i=1

δZi(x) Zi(x) ∼ η(· | x), i ∈ [N ] (5.1)

The quantities being modeled are the Dirac locations Zi(x) in (5.1), which notably can be
interpreted as samples from the target measure η(· | x). Moreover, it is easy to verify that
the quantiles of η̂(z | x) are precisely the quantities Zi(x), so we will simply approximate
measures by their τ̂i-quantiles as statistical functionals, and the imputation strategy Φ

given by
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Φ({si}Ni=1) =
1

N

N∑
i=1

δsi (5.2)

While this representation is not Bellman-closed, it is approximately Bellman-closed (so
approximation error in TD-like updates decays to 0 as N increases), it is simple to model,
and it has demonstrated great empirical success [Dabney et al., 2018a].

Concretely, in the tabular setting, this representation requires a tensor of dimension |X ||A|N .
Thus, it requiresN times the memory of a similar expected value RL algorithm. If we ven-
ture into the world of function approximation, we represent the statistical functionals by
a set of function approximators

{
Qθ
i

}N
i=1

, where Qθ
i approximates qη(·|x)(τ̂i) and θ is the

set of parameters. Implementing the function approximator with a neural network that
shares parameters among the quantile functions until the final layer (a N -headed neural
network), we again incur an N -fold memory increase.

5.1.2 Learning Return Measures

As foreshadowed, the return measures are learned by optimizing Fβ as defined in (4.10).
Recall that the fixed point of this optimization only satisfies (4.4) in the limit as β → 0. We
treat β as a hyperparameter.

Optimizing Fβ via standard gradients is difficult, however, for a couple of reasons.

Biased stochastic Wasserstein gradients As demonstrated by Bellemare et al. [2017b],
estimating gradients of the Wasserstein distances from samples are statistically biased
with high probability. Although Dabney et al. [2018a] derives a method to minimize the
1-Wasserstein distance in an unbiased manner from samples, our optimization deals with
the 2-Wasserstein distance.

Non-differentiability of the loss The entropy term H is not differentiable everywhere,
so gradients cannot blindly be computed. The Wasserstein Proximal Gradient algorithm
[Salim et al., 2020] accounts for this with a forward-backward Euler discretization scheme.

The irregularity of the approximated measures The measures we impute with Φ is by
no means absolutely continuous with respect to the Lebesgue measure. Additionally, we
know that the stationary solution of the gradient flow (4.9) is Gibbs measure with den-
sity proportional to e−φ(·), which has no atoms. The imputed return measure only have
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atoms. Since (4.9) can quickly be reformulated as DKL
(
η ‖ e−φ

)
, the loss will always be

infinite. Fortunately, this problem has already been accounted for as well. The Stein Vari-
ational Gradient Descent (SVGD) algorithm [Liu and Wang, 2019] is able to circumvent
this issue by projecting the measure η to a reproducing kernel Hilbert space (RKHS) for
the purpose of the update. Consequently the algorithm is biased, as we likely don’t know
which RKHS, if any, the return measure is part of. Alternatively, Cuturi [2013] proposes
the use of the Sinkhorn algorithm [Sinkhorn, 1967] to directly compute Fβ . The Sinkhorn
algorithm is itself an iterative algorithm, which suggests that it may be slow when paired
with an iterative algorithm like SGD. However, Cuturi [2013] shows that this algorithm
happens to be quite fast, and Martin et al. [2020] employs this algorithm successfully for
the purpose of learning value distributions in discrete time.

In our experiments, we use the SVGD algorithm during the optimization procedure, in a
similar manner to Zhang et al. [2018].

5.1.3 Exploration and Optimal Control

Due to the lack of theoretical guarantees surrounding return measure convergence in the
optimal control setting, we follow Bellemare et al. [2017a], Hessel et al. [2018] and perform
the optimization against policies with maximal means, as shown in §4.3. For the purpose
of exploration, which itself is a highly complex problem, we stick to simple yet effective
ε-greedy policies [Sutton and Barto, 2018]:

π(a | x) =


1−ε
n?

+ ε
|A| a ∈ arg maxa′∈AE [η(· | x, a′)]

ε
|A| otherwise

(5.3)

where

n? =

∣∣∣∣arg max
a∈A

E [η(· | x, a)]

∣∣∣∣
and ε ∈ (0, 1].
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5.1.4 Quantile DEICIDE with Function Approximation

In this section, we provide pseudocode of algorithms based on DEICIDE using quantiles
as statistical functionals. The difference mainly are due to the computation of the function
L ? as defined in (4.8).

A model-based algorithm Algorithm 3 attempts to approximate L ? directly. In order
to achieve this, we must learn a stochastic model of the environment (a world model).
Fortunately, we have assumed that the state process is an Itô diffusion, so we know that
Pr(Xt+δ | Xt) is Gaussian-distributed for any δ. Our world model fψπ : X × A → Pp (X )

with parameters ψ is implemented as a neural network that outputs the location and
scale1 parameters of a Gaussian distribution. Additionally, to reduce complexity, we will
assume the covariance matrices of the stochastic dynamics are diagonal, so σσσπ(x) ∈ Rd

will simply represent the diagonal of the covariance matrix at state x. The network is
trained to minimize L2 error between the samples from the world model and observed
state differences, and updates are computed by gradient descent via the reparameteri-
zation trick [Kingma and Welling, 2013]. Then, since the quantile functions are being
approximated by differentiable function approximators, the gradient and Hessian terms
due to the infinitesimal generator of the Itô Diffusion governing the state process can be
computed, which can be done without much trouble using an autodifferentation library
such as JAX [Bradbury et al., 2018].

An issue with this implementation is that optimization tends to be unstable. Note that
Algorithm 3 is not actually a temporal difference learning algorithm, since the “differ-
ence” is measured instantaneously. Consequently, there is no clear separation between
the quantile function and a target function of some sort, which prohibits the use of semi-
gradient updates that have are ubiquitous in the RL literature [Sutton and Barto, 2018].

A finite differences algorithm We also consider a model that is more stable under dif-
ferential optimization methods. Rather than computing the actual gradient and Hessian
of the quantile functions, we may employ a finite differences scheme to approximate these
computations. Since the characterization of each quantile function of the return distri-
bution (4.4) has precisely the same structure as the HJB equation, we apply a finite dif-
ferences computation proposed by Munos [2004]. A byproduct of this scheme is that we
now get to compute updates based on temporal differences, allowing us to stabilize the
updates by computing semi-gradients. This is shown in Algorithm 4.

1Rather, we output the logarithm of the scale to ensure that the scale values are positive
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Algorithm 3 Model-Based Q-DEICIDE
for each environment step k and corresponding state transition (x, a, r, x′) do

Qθ ← qη(·|x) = {qη(·|x)(τ̂i) : i ∈ [N ]}; . Quantiles for return distribution at current state
ηk ← Ψ(Qθ);
f̂π ← δ−1(x′ − x); . Dynamics estimate
(fπ, logσσσπ)← fψπ (x, a);
f̃ψπ ← F ∼ N (fπ,σσσπ); . Sample from world model
Lf (ψ)← 1

2(f̂π − f̃ψπ )2;
ψ ← ψ − αψ∇ψLf (ψ); . Gradient computed by reparameterization trick
for i ∈ {1, . . . , N} do

H (qi)← r + qi log γ + 〈∇xqη(·|x)(τ̂i), fπ〉;
ψ(qi)← 1

2

(
H (qi) + 1

2σσσ
>
πHxqη(·|x)(τ̂i)σσσπ

)2;
end for
%̃← e−φ(·); . Unnormalized target distribution
Q̂θ ← Qθ − δSVGDθ(DKL (ηk ‖ %̃) , κ); . WGF KL step with kernel κ [Liu and Wang, 2019]
θ ← θ −∇θd2

W2
(Ψ(Q̂θ), η(· | x)); . WGF 2-Wasserstein trust region step [Zhang et al., 2018]

end for

5.2 Experiments

5.2.1 A Stochastic Extension of Munos’ Toy Problem

We begin by testing DEICIDE in a very simple environment, which is a slight modification
of the toy example presented by Munos [2004]. The task consists of controlling a particle
on X = [0, 1] with actions in A = {−1, 1}. The dynamics are simply dx

dt
= f(x, a) = a.

The reward signal is zero in the interior of X . When the particle reaches a boundary,
the episode ends and the agent is given a stochastic reward sampled from a distribution
corresponding to the endpoint it reached. Specifically,

r(1) ∼ N (2, 2)

r(0) ∼ N (1, 1)

We are interested in observing how existing distributional RL algorithms perform in this
environment, and if our DEICIDE algorithms perform more favorably.

As an overview, we present a bird’s eye view of the return distribution function learned
by both the discrete-time and continuous-time algorithms.



5.2. EXPERIMENTS

Algorithm 4 Model-Based Q-DEICIDE with Finite Differences
for each environment step k and corresponding state transition (x, a, r, x′) do

Qθ ← qη(·|x) = {qη(·|x)(τ̂i) : i ∈ [N ]}; . Quantiles for return distribution at current state
ηk ← Ψ(Qθ);
f̂π ← δ−1(x′ − x); . Dynamics estimate
(fπ, logσσσπ)← fψπ (x, a);
f̃ψπ ← F ∼ N (fπ,σσσπ); . Sample from world model
Lf (ψ)← 1

2(f̂π − f̃ψπ )2;
ψ ← ψ − αψ∇ψLf (ψ); . Gradient computed by reparameterization trick
for i ∈ {1, . . . , N} do

h← 1
ε2
⊥
(
σσσ⊥π
[
qθi (x+ 2εσσσπ)− 2qθi (x+ εσσσπ) + qθi

])
;

φ(qi)← 1
2(δr + γδ⊥(qθi (x

′)) + δ
2h− qθi (x))2;

end for
%̃← e−φ(·); . Unnormalized target distribution
Q̂θ ← Qθ − δSVGDθ(DKL (ηk ‖ %̃) , κ); . WGF KL step with kernel κ [Liu and Wang, 2019]
θ ← θ −∇θd2

W2
(Ψ(Q̂θ), η(· | x)); . WGF 2-Wasserstein trust region step [Zhang et al., 2018]

end for

As in the expected value RL case, we see that the median of the return measure func-
tions converges nicely to the ground truth in our continuous-time algorithm, however
the discrete-time algorithm is disturbed at the point of non-differentiability. More in-
terestingly, the return measure function learned in the discrete-time algorithm has some
bizarre properties:

• The distributions are not symmetric. Since the agent only receives a single reward
which is Gaussian-distributed, we should expect the return measures to be Gaus-
sian, especially near the endpoints. This is not the case at all for the discrete-time
algorithm.

• The variance of the return measure vanishes very rapidly as the state moves away
from the boundaries, to the point where the return measures are effectively deter-
ministic in most of the state space. This is not the case with our continuous-time
algorithm.

• Aside from the return measures and their medians being off, the the return measures
also do not induce an optimal policy in our experiment.

We can examine some of these oddities further. Comparing the return measures estimated
near the endpoints, we observe the data shown in Figure 5.2.

We see that both algorithms tend to shed variance in the interior of the state space, how-
ever DEICIDE tends to model the full distribution substantially better, as we expect from
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QUANTILE REGRESSION TD DEICIDE TD

Figure 5.1: Bird’s eye view of the learned return distribution functions

Figure 5.1.

5.2.2 Deterministic Environments

Recall that the analysis we presented for return distributions always assumed that the
return measures are absolutely continuous with respect to the Lebesgue measure. A rea-
sonable question to ask, then, is how DEICIDE algorithms behave in deterministic envi-
ronments where the true returns have distributions δV π(·), since these distributions most
certainly do not satisfy this assumption.

Figure 5.3 illustrates the quantiles learned by Algorithm 4 when trained on the classic
CARTPOLE-V0 benchmark [Brockman et al., 2016].

We see that DEICIDE was able to accurately model the return distributions as approxi-
mate Dirac measures.

5.2.3 Deep DEICIDE

Finally, we showcase the performance of DEICIDE in a continuous-time stochastic setting.
We modify the CARTPOLE-V0 benchmark [Brockman et al., 2016] to create a benchmark,
which we call NOISYCONTINOUSTIMECARTPOLE-V0, as follows:

• We sample timesteps τ ∼ Exponential(100) + 10−3;

• We perturb force inputs to the cart with Gaussian noise sampled from N (0, 1);
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QUANTILE REGRESSION TD

DEICIDE TD

Figure 5.2: Quantile functions learned by both algorithms near the boundaries. The horizontal axis is the
quantile τ and the vertical axis is the τ -quantile. The pale shaded region is the ground truth quantile
function. The state input is indicated above each graph.

• We provide three more actions to deal with noise: a “NO-OP” action with applies
no force, and a double force action in each direction.

We implement Algorithm 4 with a deep neural network estimating the N = 11 quantile
functions (and another for the target quantile functions), as well as a deep neural network
estimating the system dynamics and trained via the reparameterization trick.

The experiment is run over several hyperparameter configurations and random seeds, as
suggested by Henderson et al. [2018]. We see that DEICIDE is fairly stable with respect to
hyperparameter configurations and seeds, as illustrated in Figure 5.4.

Additionally, we see that the agents learned the optimal controller very quickly. As an ex-
ample, Figure 5.5 displays the return measure function learned by the agent at a random
initial state.
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Figure 5.3: DEICIDE performance in CARTPOLE-V0

Figure 5.4: Stability of DEICIDE with respect to hyperparameter configurations and random seeds
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Figure 5.5: Return measure learned by a deep DEICIDE agent



6
Conclusion

In this thesis, we studied the essentially unexplored problem of learning return distri-
butions for continuous-time Markov processes. We provide theory about the character-
ization of return measures in the continuous-time limit, and analyze how the tractable
representation of probability measures affect this characterization.

Based on our analysis, we discuss the implementation of algorithms for continuous-
time distributional reinforcement learning, and we introduce the DEICIDE framework
for achieving this. Upon testing DEICIDE implementations against some simple control
benchmarks, we observe that our continuous-time algorithm substantially outperforms
the Quantile Regression TD learning baseline in an environment where the value func-
tion is non-differentiable, as hypothesized. In fact, the failure of discrete-time algorithms
in this setting was far more pronounced in the stochastic case relative to our continuous-
time implementation.

Finally, we demonstrated that DEICIDE algorithms can be endowed with highly nonlin-
ear function approximators such as deep neural networks. We see that such implementa-
tions are able to accurately learn return distribution functions in a stochastic extension of
the common CARTPOLE-V0 benchmark with randomly-sampled timesteps.
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To conclude, the results presented in this thesis show promise for the prospects distri-
butional reinforcement learning in continuous time, however lots of room is left for fu-
ture work in this field. For instance, a distributional extension of Advantage Updating
[Baird III, 1993] is by no means a trivial task, but may drastically improve continuous-
time distributional RL algorithms. Moreover, an interesting future direction in this line
of work would involve studying methods of simulating and evaluating the continuous-
time performance of RL algorithms. In this thesis, we very briefly touch on this with our
experiments that sample random timesteps. However, the distribution of the timestep
duration was essentially arbitrary and may not be a good model for such phenomena in
the real world, such as randomly-timed observations from robotic systems with several
sensors. Further investigation into such models can potentially reveal further challenges
in continuous-time RL that could hinder the performance of RL-trained systems in the
real world.



A
A Primer on Topology

Concepts from the field of topology are mentioned often in this thesis. Some definitions
and basic results are stated here.

Definition 19 (Topological Space). A topological space is a pair (X,O) consisting of a set
X and a collection O ⊂ 2X of subsets of X such that

1. ∅ ∈ O and X ∈ O;

2. If (Uα)α∈I ⊂ O, then
⋃
α∈I Uα ∈ O;

3. If N is a finite integer and {Ui}Ni=1 ⊂ O, then
⋂
i∈[N ] Ui ∈ O.

The set O is called a topology on X , and the elements of O are called open sets. 5

It is only natural to ask what it means for a set to be closed.

Definition 20 (Closed Set). Let (X,O) be a topological space. A set F ⊂ X is said to be
closed if its complement is an open set. 5

Remark A.1. It should be noted that openness and closedness are not mutually exclusive
properties of sets – in fact, by the very definition of a topology, the “whole space” and the
empty set must both be simultaneously open and closed. Such sets are called clopen.
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The choice of the topology characterizes what it means for a function to be continuous
and what it means for a sequence to converge (among other things).

Definition 21 (Continuous Function). Let (X,O), (Y,U) be topological spaces. A function
f : (X,O) → (Y,U) is said to be continuous if its preimage of every open set U ⊂ Y is an
open set in X . That is,

U ∈ U =⇒ {x ∈ X : f(x) ∈ U} ∈ O

5

Definition 22 (Convergence). Let (X,O) be a topological space. A sequence {xi}Ni=1 ⊂ X

is said to converge to a point x ∈ X if for every open set U 3 x there exists a finite integer
N such that {xi}∞i=N ⊂ U . 5

The following proposition can be verified directly.

Proposition 4 (The Universal Topology). Let X = N and let

O = {∅, X, U,X \ U}

where U = {4, 8, 15, 16, 23, 42}. Then any sequence {xi}∞i=1 ⊂ X such that {xi}∞i=N ⊂ U

converges to 42, where N is a finite integer. For instance, the sequence 15, 16, 15, 16, · · · → 42.

A.1 Metric Spaces

Proposition 4 should be a little alarming. Indeed, many topological spaces are quite
pathological. Usually we restrict our interests to spaces with a little more structure, such
as a spaces that can be equipped with a meaningful notion of distance.

Definition 23 (Metric Space). A metric space is a pair (X, dX) where X is a set and dX :

X ×X → R+, called a metric or a distance function, satisfies

1. (Separation of points) For any x, y ∈ X , dX(x, y) = 0 ⇐⇒ x = y;

2. (Symmetry) For any x, y ∈ X , dX(x, y) = dX(y, x);

3. (Triangle inequality) For any x, y, z ∈ X , dX(x, z) ≤ dX(x, y) + d(y, x).

5
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A metric space is a special case of a topological space, where the topology is understood
to be the smallest topology1 containing all open balls Br(x) = {y ∈ X : dX(x, y) < r}.
Notably, not every topological space has a metric structure. For instance, there is no
function on N with the universal topology that satisfies the metric properties.

Remark A.2. The definitions of continuity and convergence on metric spaces coincide
with those that are given in standard calculus courses.

Definition 24 (Cauchy Sequence). Let (X, d) be a metric space. A sequence {xi}∞i=1 ⊂ X

is called a Cauchy sequence if for every ε > 0 there exists a finite integer N such that

d(xn, xm) ≤ ε ∀m,n ≥ N

5

Remark A.3. Counterintuitively, Cauchy sequences may not converge. A sequence only
converges (in a given topological space) if the limit lies in the space. For instance, the
sequence {xk}∞k=1 ⊂ (0, 1) where xk = 1

k
is Cauchy, but its limiting value is 0 which is not

in (0, 1).

Definition 25 (Complete Space). A metric space (X, d) is said to be complete if every
Cauchy sequence in X converges in X . By the previous remark, the set (0, 1) is not com-
plete with the standard topology on the real numbers. 5

Finally, we demonstrate a useful property of metric spaces.

Lemma A.1 (Well-behaved convergence). In any metric space (X, d), no sequence can con-
verge to more than one point.

Proof. Suppose {xk}∞k=1 ⊂ X has limits x, y. Then

lim
k→∞

d(xk, x) = 0

1The smallest topology conforming to some constraint is the intersection of all topologies that conform
to the constraint.
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Moreover, by the triangle inequality, for any k we have d(x, y) ≤ d(x, xk)+d(xk, y). There-
fore,

d(x, y) ≤ lim
k→∞

d(x, xk) + lim
k→∞

d(xk, y)

= d(xk, y)

So if xk → y, then we must have d(x, y) = 0, and by the separation of points property this
implies that x = y.



B
The Basics of Measure Theory

Measure theory is a vast field of mathematical analysis that is concerned with general-
izing the notion of measure, such as length, area, and volume, to arbitrary spaces. For
the sake of building intuition, suppose we have a 3-dimensional sphere S = {x ∈ R3 :

‖x‖ ≤ r} and we are interested in measuring its volume, as well as the volume of arbi-
trary “pieces” of the sphere. Formally, we’re looking for a function Vol : 2S → R+ that
maps subsets of the sphere to a non-negative real number. This function cannot just be an
arbitrary function, as we expect a volume to satisfy certain properties. For instance, we
need the following:

1. Emptiness has no volume: Vol(∅) = 0;

2. For disjoint subsets A,B ⊂ S, the volume of the combination of A,B should be
equivalent to the sum of their original volumes: A ∩ B = ∅ =⇒ Vol(A + B) =

Vol(A) + Vol(B);

3. For any subset D ⊂ S, no subset of D can have more volume than D: C ⊂ D =⇒
Vol(C) ≤ Vol(D).

This is not particularly interesting at first glance. However, with this definition of mea-
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sure, there are some alarming consequences. In particular, the Banach-Tarski paradox demon-
strates how one can disassemble S into a collection of pieces, and reassemble the pieces
to form two identical copies of S [Banach and Tarski, 1924]. Moreover, a function that
measures the length of arbitrary subsets of the real line (according to the rules above) and
assigns finite length to the interval (0, 1) cannot possibly exist [Cohn, 2013].

Interestingly, the issue lies not exactly with the rules we listed, but with the sets we wish to
measure. In short, in order to construct a meaningful measure function, we must restrict
this function to measure only “nice-enough” sets. In this context, the collection of “nice
enough” sets is actually quite vast, and it is usually difficult to even conceive a set that
is not nice enough. This will be explained in further detail in §B.1, and integration with
respect to measures will be discussed in §B.2.

B.1 Measurable Spaces

The distinction of sets that can and cannot be measured is formalized by a measurable
space. Not unlike topological spaces, a measurable space is comprised of a set with a
collection of subsets, where the subsets denote the sets that one may measure. Like the
topology of a set, the collection of measurable sets cannot be arbitrary. Rather, it must be
a σ-algebra.

Definition 26 (σ-algebra). Let Ω be a set. A σ-algebra over Ω is a collection of subsets
Σ ⊂ 2Ω such that

1. ∅,Ω ∈ Σ;

2. A ∈ Σ =⇒ Ac = Ω \ A ∈ Σ;

3. If {Ak}∞k=1 is a countable collection of sets in Σ, then
⋃
k Ak ∈ Σ.

We occasionally refer to the smallest σ-algebra containing a collection of subsets, or the
σ-algebra generated by this collection of subsets. For a collection of subsets U ⊂ 2Ω, this
σ-algebra is denoted by σ(U) and is defined as

σ(U) =
⋂{

Σ ∈ 2Ω : Σ is a σ-algebra, U ⊂ Σ
}

5

Essentially, the σ algebra describes any quantities we may want to measure. If we are



B.1. MEASURABLE SPACES

able to measure the volume of S and we are able to measure the volume of A ⊂ S, then
naturally we should be able to measure the volume of S \A. Likewise, if we can measure
the volume of a countable collection of subsets of S, we should be able to measure their
union. While this construction seems rather innocuous, σ-algebras can contain exception-
ally “rough” sets. Below, we define a family of σ-algebras that is referred to extensively
in this thesis.

Definition 27 (Borel σ-algebra). Let (X,O) be a topological space. The Borel σ-algebra over
(X,O) (or the Borel σ-algebra overX when the topology is implicit), denoted by B(X,O),
is the smallest σ-algebra containing O. 5

Definition 28 (Measurable Space). A measurable space is a pair (Ω,Σ) where Ω is a set and
Σ is a σ-algebra over Ω. 5

We are finally able to formalize the concept of a measure.

Definition 29 (Measure). Let (Ω,Σ) be a measurable space. A measure on (Ω,Σ) is a func-
tion µ : Σ→ R+ such that

1. µ(∅) = 0;

2. A ⊂ B =⇒ µ(A) ≤ µ(B);

3. If {Ak}∞k=1 is a countable collection of disjoint sets in Σ (so i 6= j =⇒ Ai ∩ Aj = ∅),
then

µ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak)

A tuple (Ω,Σ, µ) is called a measure space. 5

Taking a step back to the examples above, it is known that there is no measure on the
measurable space (R, 2R) that assigns finite measure to (0, 1), and matter can be created
out of thin air if we can break apart objects into any subset of space.

A very important result in measure theory is the existence of a measure space over R that
assigns the measure |b − a| to subsets of the form (a, b), [a, b], (a, b], [a, b). This measure is
called the Lebesgue measure, and it is the only measure satisfying the mentioned property.
See Cohn [2013], or any textbook on measure theory, for more rigorous details.

Finally, we’ll define the class of functions that preserve measure-theoretic properties.

Definition 30 (Measurability). Let (Ω,Σ), (Ω′,Σ′) be measurable spaces. A function f :
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(Ω,Σ) → (Ω′,Σ′) is said to be measurable if the preimage of every Σ′-measurable set A
through f is Σ-measurable. 5

It can quickly be verified that the composition of measurable functions is itself a mea-
surable function [Cohn, 2013]. Therefore, we can define measures through a change of
variables, assuming the mapping between variables is measurable.

Definition 31 (Pushforward Measure). Let (Ω,Σ, µ) be a measure space, and let (Ω′,Σ′)

be a measurable space. For any measurable function f : (Ω,Σ)→ (Ω′,Σ′), the pushforward
of f through µ, denoted f]µ, is a measure on (Ω′,Σ′) given by

f]µ = µ ◦ f−1

where f−1 is the preimage of f . 5

B.1.1 Measure-theoretic Probability Theory

A natural application of this formalism, aside from measurements of geometric proper-
ties, is probability. In fact, we can formalize probability very easily as a measure space.

Definition 32 (Probability Space). A probability space is a measure space (Ω,Σ, µ) where
µ(Ω) = 1. 5

Occasionally, in the context of probability, the set Ω is called the sample space, the σ-algebra
Σ is called the event space, and the measure µ is called a probability measure.

Moreover, we can use the language of measure theory to formalize the concept of a ran-
dom variables.

Definition 33 (Random Variable). Let (Ω,Σ, µ) be a probability space, and let A be an
arbitrary set. A random variable on this space is a function Y : Σ→ A. 5

For a given measure space (Ω,Σ, µ), a property is said to hold µ-almost everywhere (or
simply “almost everywhere” when the measure is implicit) if the property holds on all
of Ω, except for possibly a set A with µ(A) = 0. When µ is a probability measure, it is
sometimes said that the property holds almost surely.
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B.2 Integration

A measure can be thought of as an arbitrary method of assigning weight or density to a
space. As such, the notation of integration can be formulated in terms of measures. In
this section, a brief overview of this type of integration, known as Lebesgue integration,
and its properties will be given.

We’ll consider a measure space (Ω,Σ, µ). In order to construct an integral, we’ll begin by
defining the integral on a simple class of functions, aptly called the simple functions.

Definition 34 (Simple Function). A simple function f is a function of the form

f(x) =
n∑
i=1

αiχAi(x)

where αi ∈ R and {Ai}ni=1 is a finite collection of measurable sets. 5

It is easy to verify that the sum and product of simple functions are both simple func-
tions. The notion of integration of a simple function f with respect to a measure is fairly
intuitive. We define

∫
f(x)dµ =

n∑
i=1

αiµ(Ai) f =
n∑
i=1

αiχAi

By linearity, it clearly follows that the Lebesgue integral restricted to simple functions is
linear. The Lebesgue integral of measurable functions f is given by

∫
fdµ = sup

{∫
sdµ : s is a simple function

}

It is well known that the Lebesgue integral is linear over all measurable functions, and
it is well defined. Moreover, it is known that the Lebesgue integral with respect to the
Lebesgue measure agrees with the Riemann-Stieltjes integral on all integrable functions.
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B.2.1 Convergence Theorems

In this section, we’ll simply state some commonly known convergence properties of the
Lebesgue integral. See Cohn [2013] for further details.

Theorem B.1 (The Monotone Convergence Theorem). Let (Ω,Σ, µ) be a measure space and
let {fi}∞i=1 be a sequence of [0,∞]-valued Σ-measurable functions. Suppose that for all fi ≤ fj for
all i ≤ j, and that limi→∞ fi(x) = f(x) for almost every x ∈ X . Then

∫
fdµ = limi→∞

∫
fidµ.

Theorem B.2 (The Dominated Convergence Theorem). Let (Ω,Σ, µ) be a measure space, g a
[0,∞]-valued integrable function on Ω, and {fn}∞n=1 a collection of Σ-measurable functions where
limn→∞ fn(x) = f(x) almost everywhere. If |fn(x)| ≤ g(x) almost everywhere for each n, then
{fn}∞n=1 and f are integrable, and

∫
f(x) = limn→∞

∫
fndµ almost everywhere.



C
Tools from the Theory of Stochastic

Processes

This appendix will survey some concepts from the theory of stochastic processes that are
useful in the developments of this thesis. This theory tends to be quite technical, and one
should be comfortable with the concepts of Appendices A and B before proceeding.

C.1 Some Special Classes of Stochastic Processes

C.1.1 Measurable, Adapted, and Progressive Processes

When dealing with stochastic processes, there are a few properties that we generally de-
sire in order for us to be able to analyze them nicely. The most common examples will be
summarized here. These definitions are due to Le Gall [2016].

For the following definitions, we will fix a probability space (Ω,F ,Pr), and we will con-
sider a stochastic process (Xt)t≥0 ⊂ X , where (X ,Σ) is a measurable space..

Definition 35 (Measurable Process). The process (Xt)t≥0 ⊂ X is said to be measurable if
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(ω, t) 7→ Xt(ω) is a measurable map on Ω ×R+ with respect to the smallest σ-algebra on
B(R+)×F . 5

For the remainder of the definitions, we will also consider a filtration (see Definition 3)
(Ft)t≥0 making (Ω,F , (Ft)t≥0 ,Pr) a filtered probability space.

Definition 36 (Adapted Process). The process (Xt)t≥0 ⊂ X is adapted ifXt isFt-measurable
for every t ≥ 0. 5

Definition 37 (Progressive Process). The process (Xt)t≥0 ⊂ X is progressive (or progressively
measurable) if (ω, s) 7→ Xt(ω) is measurable on Ω × [0, t] with respect to the smallest σ-
algebra on Ft ×B([0, t]) for each t ≥ 0. 5

C.1.2 Martingales

Definition 38 (Martingales, Rogers and Williams [1994]). A martingale (relative to a
given filtration (Ft)t≥0) is a stochastic process (Mt)t≥0 where Mt ∈ L1 and

Ms = E [Mt | Fs] 0 ≤ s ≤ t (C.1)

Equation (C.1) is referred to as “the martingale property”. If the equality in (C.1) is instead
≥ (resp. ≤), (Mt)t≥0 is called a supermartingale (resp. submartingale). 5

Definition 39 (Local Martingales, Le Gall [2016]). A local martingale is a stochastic pro-
cess (Mt)t≥0 for which there exists a sequence of nondecreasing stopping times (Tn)∞n=1

such that MTn = (Mt∧Tn)t≥0 ∈ L1 is a martingale. 5

Definition 40 (Semimartingales, Le Gall [2016]). A semimartingale is a random process
(Xt)t≥0 such that Xt = At + Mt for each t ≥ 0, where (At)t≥0 is a finite variation process
and (Mt)t≥0 is a local martingale. 5

C.1.3 Finite Variation Processes

Definition 41 (Finite Variation Function, Le Gall [2016]). Let T ≥ 0. A continuous func-
tion a : [0, T ] → R with a(0) = 0 is said to have finite variation if there exists a signed
measure µ on [0, T ] such that a(t) = µ([0, t]) for any t ∈ [0, T ]. 5

A finite variation process is a process whose regularity is given by finite variation sample
paths, as formalized in the next definition.



C.2. ITÔ’S LEMMA

Definition 42 (Finite Variation Process, Le Gall [2016]). A process (At)t≥0 is called a finite
variation process if all of its sample paths are finite variation functions on R+. 5

The following processes generalize the notion of covariance of random variables to stochas-
tic processes, and appear frequently in important stochastic calculus theorems. Their def-
initions are given by Le Gall [2016].

Definition 43 (Quadratic Variation). Let (Mt)t≥0 be a local martingale. The quadratic vari-
ation of (Mt)t≥0, denoted ([M,M ]t)t≥0, is the unique increasing process such that (M2

t −
[M,M ]t)t≥0 is a local martingale. 5

Remark C.1. The existence and uniqueness of the quadratic variation is shown by Le Gall
[2016, Theorem 4.9].

Definition 44 (The Bracket of Local Martingales). Let (Mt)t≥0 , (Nt)t≥0 be local martin-
gales. The bracket of M,N , denoted ([M,N ]t)t≥0 is the finite variation process ([M,N ]t)t≥0

given by

[M,N ]t =
1

2

(
[M +N,M +N ]t − [M,M ]t − [N,N ]t

)
5

C.2 Itô’s Lemma

Itô’s Lemma is a very powerful tool in the analysis of stochastic processes. It can be
thought of as a stochastic analog to Taylor’s theorem.

Theorem C.1 (Itô’s Lemma, Le Gall [2016]). Let (X i)pi=1 be real valued semimartingales and
let f ∈ C2(R). Let Xt = (X1

t , . . . , X
p
t ). Then, for every t ≥ 0,

f(Xt) = f(X0) +

p∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX

i
s +

1

2

p∑
i=1

p∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d[X i, Xj]s (C.2)

C.3 The Feynman-Kac Formula

We make use of the following formulation of the Feynman-Kac formula, as illustrated in
Le Gall [2016, Exercise 6.26].

Theorem C.2. Let (Xt)t≥0 be a Feller-Dynkin process in a space X and let v ∈ C0(X ). Define
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for any x ∈ X and φ a bounded and measurable function over X the transition semigroup (Q?
t )t≥0

where

Q?
tφ(x) = E

[
φ(Xt) exp

(
−
∫ t

0

v(Xs)ds

) ∣∣∣∣ X0 = x

]

If (Xt)t≥0 admits an infinitesimal generator L and φ ∈ D(L ), then

d

dt
Q?
tφ|t=0 = L φ− v ⊗ φ (C.3)

Remark C.2. The Feynman-Kac formula can be seen as the Kolmogorov Backward Equa-
tion with an “integrating factor”. Effectively, the Feynman-Kac formula allows us to iden-
tify solutions of PDEs of the form

∂u

∂t
= −L u+ v ⊗ φ

with conditional expectations of diffusion processes.



D
Tempered Distributions

A recurring concept in many areas of mathematics, physics, and engineering is that of
generalized functions, known as distributions1. One such example is the Dirac delta. Dis-
tributions are particularly helpful at formally describing weakened solutions to PDEs by
objects that may not be functions.

In this thesis, we will make use of the class of tempered distributions, whose definition will
be given in this appendix. For more details, refer to Lax and Sons [2002].

Definition 45 (Schwartz Class). Let X be a normed space. A Schwartz class is a class S of
rapidly decaying-smooth functions,

S =

{
f ∈ C∞(X;R) : sup

x∈X
(1 + ‖x‖k)|f (m)(x)| <∞ ∀k,m ∈ N

}
5

Definition 46 (Tempered Distribution). A tempered distribution is an element of the topo-

1Not to be confused with probability distributions.
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logical dual2 S ′ of the Schwartz class S. 5

Remark D.1. The Dirac delta is the operator δ such that 〈δ, φ〉 = φ(0). Clearly δ is linear,
and since it is bounded, it is continuous. Therefore δ is indeed a tempered distribution.

Tempered distributions admit a notion of differentiability, which can be used to define
“distributional” solutions to PDEs.

Definition 47 (Distributional Derivative). Let S be a Schwartz class and ψ ∈ S ′ a tem-
pered distribution. Then ψ has a distributional derivative if there exists a tempered dis-
tribution ψ′ for which

〈ψ′, φ〉 = −〈ψ, φ′〉 ∀φ ∈ S,

and ψ′ is called the distributional derivative of ψ. 5

Definition 48 (Distributional Solutions of Hamilton-Jacobi PDEs). Consider the following
PDE,

∂u

∂t
= f ◦ u+ 〈∇u, g〉+ h>Hyuh (D.1)

where u ∈ C2(R+ × Y ;R) for a normed space Y .

Then ψ ∈ S ′ is said to be a distributional solution to (D.1) if

∫ ∞
0

∫
Y
φ(t, y)

(
f(ψ(y))− ∂

∂t
ψ(y)

)
dydt

=

∫ ∞
0

∫
Y

[
〈ψ(y)g(y),∇yφ(t, y)〉 − h(y)>ψ(y)Hyφ(t, y)h(y)

]
dydt

for every test function φ ∈ S. This is justified by simply multiplying both sides of (D.1)
by the test function, integrating over R+ × Y , and substituting gradient terms of ψ with
respect to its distributional derivative. 5

2The dual of a normed space is the set of all continuous, linear functionals on that space.
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the space of probability measures. Springer Science & Business Media, 2008.

Dilip Arumugam, Peter Henderson, and Pierre-Luc Bacon. An information-
theoretic perspective on credit assignment in reinforcement learning. arXiv preprint
arXiv:2103.06224, 2021.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex
Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the
atari human benchmark. In International Conference on Machine Learning, pages 507–517.
PMLR, 2020.

Leemon C Baird. Reinforcement learning in continuous time: Advantage updating. In
Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), vol-
ume 4, pages 2448–2453. IEEE, 1994.

Leemon C Baird III. Advantage updating. Technical report, WRIGHT LAB WRIGHT-
PATTERSON AFB OH, 1993.
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narayanan, Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to
biased wasserstein gradients. arXiv preprint arXiv:1705.10743, 2017b.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C
Machado, Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous nav-
igation of stratospheric balloons using reinforcement learning. Nature, 588(7836):77–82,
2020.

Richard Bellman. The theory of dynamic programming. Technical report, Rand corp
santa monica ca, 1954.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, 6
(5):679–684, 1957.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to
the monge-kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393,
2000.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. Jax: composable transformations of python+numpy programs.
2018. URL http://github.com/google/jax.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. arXiv preprint arXiv:1805.09545, 2018.

Donald L Cohn. Measure theory. Springer, 2013.

Michael G Crandall and Pierre-Louis Lions. Viscosity solutions of hamilton-jacobi equa-
tions. Transactions of the American mathematical society, 277(1):1–42, 1983.

http://github.com/google/jax


BIBLIOGRAPHY

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation
distances, 2013.

W. Dabney, M. Rowland, Marc G. Bellemare, and R. Munos. Distributional reinforcement
learning with quantile regression. In AAAI, 2018a.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks
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